Semiconductor Optoelectronics, Volume. 45, Issue 5, 805(2024)
Achromatic Metalens Design based on Light Field Stitching
[1] [1] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.
[2] [2] Kamali S M, Arbabi E, Arbabi A, et al. A review of dielectric optical metasurfaces for wavefront control[J]. Nanophotonics, 2018, 7(6): 1041-1068.
[3] [3] Lee G-Y, Yoon G, Lee S-Y, et al. Complete amplitude and phase control of light using broadband holographic metasurfaces[J]. Nanoscale, 2018, 10(9): 4237-4245.
[4] [4] He H, Yang H, Xie Z, et al. Broadband mid-infrared metalens with polarization-controlled at-will chromatic dispersion[J]. Nanoscale, 2022, 14(34): 12476-12482.
[5] [5] Ou K, Yu F, Li G, et al. Mid-infrared polarization-controlled broadband achromatic metadevice[J]. Sci. Adv., 2020, 6(37): eabc0711.
[6] [6] Ou K, Yu F, Li G, et al. Broadband achromatic metalens in mid-wavelength infrared[J]. Laser Photonics Rev., 2021, 15(9): 2100020.
[7] [7] Jiang Y, Cui C, Zhao J, et al. Mid-infrared broadband achromatic metalens with wide field of view[J]. Materials, 2022, 15(21): 7587.
[8] [8] Guo K, Wang C, Kang Q, et al. Broadband achromatic metalens with polarization insensitivity in the mid-infrared range[J]. Opt. Mater., 2022, 131: 112489.
[9] [9] Zhou H, Chen L, Shen F, et al. Broadband achromatic metalens in the midinfrared range[J]. Phys. Rev. Appl., 2019, 11(2): 024066.
[10] [10] Xie Y, Zhang J, Wang S, et al. Broadband achromatic polarization-insensitive metalens in the mid-wave infrared range[J]. Appl. Opt., 2022, 61(14): 4106.
[11] [11] Xiong W, Sha C, Ding J. Polarization-independent broadband achromatic metalens in the mid-infrared (3~5 m) region [J]. Appl. Phys. Express, 2022, 15(2): 022001.
[12] [12] Yuan Y, Yan Z, Zhang P, et al. A broadband achromatic dielectric planar metalens in mid-IR range[J]. Photonic Sens., 2023, 13: 230126.
[13] [13] Wang S, Wu P C, Su V-C, et al. Broadband achromatic optical metasurface devices[J]. Nature Commun., 2017, 8: 187.
[14] [14] Chen Q, Liu Y, Lei Y, et al. Recent progress on achromatic metalenses[J]. Prog. Electromagn. Res., 2022, 173: 9-23.
[15] [15] Sun P, Zhang M, Dong F, et al. Broadband achromatic polarization insensitive metalens over 950 nm bandwidth in the visible and near-infrared[J]. Chin. Opt. Lett., 2022, 20(1): 013601.
[16] [16] Xiu D, Liu S, Li Y, et al. High NA and polarization-insensitive ultra-broadband achromatic metalens from 500 to 1 050 nm for multicolor two-photon endomicroscopy imaging[J]. Opt. Express, 2023, 31(19): 30092.
[17] [17] Xiao G, Chen J, Yang H, et al. Doublet metalens for polarization conversion as well as focusing[J]. J. Lightwave Technol., 2024, 42(6): 2076-2082.
[18] [18] Shrestha S, Overvig A C, Lu M, et al. Broadband achromatic dielectric metalenses[J]. Light Sci. Appl., 2018, 7: 85.
[19] [19] Banerji S, Meem M, Majumder A, et al. Imaging with flat optics: metalenses or diffractive lenses[J]. Optica, 2019, 6(6): 805.
[20] [20] Xiao X, Zhao Y, Ye X, et al. Large-scale achromatic flat lens by light frequency-domain coherence optimization[J]. Light Sci. Appl., 2022, 11: 323.
Get Citation
Copy Citation Text
HUANG Yongwei, ZHENG Shaonan, ZHAO Xingyan, QIU Yang, DONG Yuan, ZHONG Qize, HU Ting. Achromatic Metalens Design based on Light Field Stitching[J]. Semiconductor Optoelectronics, 2024, 45(5): 805
Category:
Received: Apr. 3, 2024
Accepted: Feb. 13, 2025
Published Online: Feb. 13, 2025
The Author Email: