Journal of Innovative Optical Health Sciences, Volume. 16, Issue 6, 2340003(2023)
Motor network reorganization in stroke patients with dyskinesias during a shoulder-touching task: A fNIRS study
[1] Y. Yu, Z. Y. Meng, A. Li, Y. Lin, J. Liu, Y. S. Ma, Y. Wang, Z. H. Ma. Monitoring of edema progression in permanent and transient MCAO model using SS-OCT. J. Innov. Opt. Health Sci., 14, 2140006(2021).
[2] E. S. Lawrence, C. Coshall, R. Dundas, J. Stewart, A. G. Rudd, R. Howard, C. D. A. Wolfe. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke, 32, 1279-1284(2001).
[3] H. L. Carlson, B. T. Craig, A. J. Hilderley, J. Hodge, D. Rajashekar, P. Mouches, N. D. Forkert, A. Kirton. Structural and functional connectivity of motor circuits after perinatal stroke: A machine learning study. Neuroimage Clin., 28, 102508(2020).
[4] J. Mogensen. Reorganization of the injured brain: Implications for studies of the neural substrate of cognition. Front Psychol., 2, 7(2011).
[5] H. C. Chen, J. B. Liang, W. Z. Huang, A. P. Yang, R. C. Pang, C. C. Zhao, K. Wu, C. Wang, K. C. Yan, Y. Z. Zhang, S. S. Lin, Y. R. Xie, Y. X. Wu, J. Y. Sun. Age-related difference in muscle metabolism patterns during upper limb’s encircling exercise: A near-infrared spectroscopy study. Biomed. Opt. Express, 13, 4737-4751(2022).
[6] Q. Bashir, A. Ishfaq, A. A. Baig. Safety of diagnostic cerebral and spinal digital subtraction angiography in a developing country: A single-center experience. Interv. Neurol., 7, 99-109(2018).
[7] N. S. Ward, M. M. Brown, A. J. Thompson, R. S. J. Frackowiak. Neural correlates of motor recovery after stroke: A longitudinal fMRI study. Brain, 126, 2476-2496(2003).
[8] H. Obrig. NIRS in clinical neurology a ‘promising’ tool?. Neuroimage, 85, 535-546(2014).
[9] J. Y. Sun, R. C. Pang, S. S. Chen, H. C. Chen, Y. R. Xie, D. D. Chen, K. Wu, J. B. Liang, K. C. Yan, Z. F. Hao. Near-infrared spectroscopy as a promising tool in stroke: Current applications and future perspectives. J. Innov. Opt. Health Sci., 14, 2130006(2021).
[10] P. Manganotti, S. F. Storti, E. Formaggio, M. Acler, G. Zoccatelli, F. B. Pizzini, F. Alessandrini, A. Bertoldo, G. M. Toffolo, P. Bovi, A. Beltramello, G. Moretto, A. Fiaschi. Effect of median-nerve electrical stimulation on BOLD activity in acute ischemic stroke patients. Clin. Neurophysiol., 123, 142-153(2012).
[11] M. E. Michielsen, R. W. Selles, J. N. van der Geest, M. Eckhardt, G. Yavuzer, H. J. Stam, M. Smits, G. M. Ribbers, J. B. J. Bussmann. Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients: A phase II randomized controlled trial. Neurorehabil. Neural Repair, 25, 223-233(2011).
[12] I. Miyai, H. Yagura, M. Hatakenaka, I. Oda, I. Konishi, K. Kubota. Longitudinal optical imaging study for locomotor recovery after stroke. Stroke, 34, 2866-2870(2003).
[13] A. K. Rehme, S. B. Eickhoff, C. Rottschy, G. R. Fink, C. Grefkes. Activation likelihood estimation meta-analysis of motor-related neural activity after stroke. Neuroimage, 59, 2771-2782(2012).
[14] I. Favre, T. A. Zeffiro, O. Detante, A. Krainik, M. Hommel, A. Jaillard. Upper limb recovery after stroke is associated with ipsilesional primary motor cortical activity a meta-analysis. Stroke, 45, 1077-1083(2014).
[15] A. K. Rehme, C. Grefkes. Cerebral network disorders after stroke: Evidence from imaging-based connectivity analyses of active and resting brain states in humans. J. Physiol., 591, 17-31(2013).
[16] C. Grefkes, D. A. Nowak, S. B. Eickhoff, M. Dafotakis, J. Kust, H. Karbe, G. R. Fink. Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann. Neurol., 63, 236-246(2008).
[17] L. Wang, C. S. Yu, H. Chen, W. Qin, Y. He, F. M. Fan, Y. J. Zhang, M. L. Wang, C. Li, Y. F. Zang, T. S. Woodward, C. Z. Zhu. Dynamic functional reorganization of the motor execution network after stroke. Brain, 133, 1224-1238(2010).
[18] C. H. Park, W. H. Chang, S. H. Ohn, S. T. Kim, O. Y. Bang, A. Pascual-Leone, Y. H. Kim. Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke, 42, 1357-1362(2011).
[19] A. M. Golestani, S. Tymchuk, A. Demchuk, B. G. Goodyear, V.-S. Grp. Longitudinal evaluation of resting-state fMRI after acute stroke with hemiparesis. Neurorehabil. Neural Repair, 27, 153-163(2013).
[20] A. R. Carter, S. V. Astafiev, C. E. Lang, L. T. Connor, J. Rengachary, M. J. Strube, D. L. W. Pope, G. L. Shulman, M. Corbetta. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann. Neurol., 67, 365-375(2010).
[21] T. Hoshino, K. Oguchi, K. Inoue, A. Hoshino, M. Hoshiyama. Relationship between lower limb function and functional connectivity assessed by EEG among motor-related areas after stroke. Top. Stroke Rehabil., 28, 614-623(2021).
[22] L. Cheng, Z. Y. Wu, J. F. Sun, Y. Fu, X. N. Wang, G. Y. Yang, F. Miao, S. B. Tong. Reorganization of motor execution networks during sub-acute phase after stroke. IEEE Trans. Neural Syst. Rehabil. Eng., 23, 713-723(2015).
[23] B. H. Dobkin. Rehabilitation after stroke. N. Engl. J. Med., 352, 1677-1684(2005).
[24] M. Mihara, I. Miyai. Review of functional near-infrared spectroscopy in neurorehabilitation. Neurophotonics, 3, 031414(2016).
[25] A. Ghosh, C. Elwell, M. Smith. Cerebral near-infrared spectroscopy in adults: A work in progress. Anesth. Analg., 115, 1373-1383(2012).
[26] A. Wong, L. Robinson, S. Soroush, A. Suresh, D. Yang, K. Madu, M. N. Harhay, K. Pourrezaei. Assessment of cerebral oxygenation response to hemodialysis using near-infrared spectroscopy (NIRS): Challenges and solutions. J. Innov. Opt. Health Sci., 14, 2150016(2021).
[27] G. Strangman, D. A. Boas, J. P. Sutton. Non-invasive neuroimaging using near-infrared light. Biol. Psychiatry, 52, 679-693(2002).
[28] K. S. Hong, M. A. Yaqub. Application of functional near-infrared spectroscopy in the healthcare industry: A review. J. Innov. Opt. Health Sci., 12, 1930012(2019).
[29] Z. S. Hu, G. F. Liu, Q. Dong, H. J. Niu. Applications of resting-state fNIRS in the developing brain: A review from the connectome perspective. Front Neurosci., 14, 476(2020).
[30] M. Cope, D. T. Delpy. System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med. Biol. Eng. Comput., 26, 289-294(1988).
[31] G. Strangman, J. P. Culver, J. H. Thompson, D. A. Boas. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage, 17, 719-731(2002).
[32] S. Kohno, I. Miyai, A. Seiyama, I. Oda, A. Ishikawa, S. Tsuneishi, T. Amita, K. Shimizu. Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis. J. Biomed. Opt., 12, 062111(2007).
[33] F. Scholkmann, S. Spichtig, T. Muehlemann, M. Wolf. How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation. Physiol. Meas., 31, 649-662(2010).
[34] S. B. Lim, J. J. Eng. Increased sensorimotor cortex activation with decreased motor performance during functional upper extremity tasks poststroke. J. Neurol. Phys. Ther., 43, 141-150(2019).
[35] A. Jansen, R. Menke, J. Sommer, A. F. Forster, S. Bruchmann, J. Hempleman, B. Weber, S. Knecht. The assessment of hemispheric lateralization in functional MRI — Robustness and reproducibility. Neuroimage, 33, 204-217(2006).
[36] R. C. Pang, D. Wang, T. S. R. Chen, A. P. Yang, L. Yi, S. S. Chen, J. Wang, K. Wu, C. C. Zhao, H. Liu, Y. L. Ai, A. R. Yang, J. Y. Sun. Reorganization of prefrontal network in stroke patients with dyskinesias: Evidence from resting-state functional near-infrared spectroscopy. J. Biophotonics, 15, e202200014(2022).
[37] O. Zaro-Weber, M. Livne, S. Z. Martin, F. C. von Samson-Himmelstjerna, W. Moeller-Hartmann, A. Schuster, P. Brunecker, W. D. Heiss, J. Sobesky, V. I. Madai. Comparison of the 2 most popular deconvolution techniques for the detection of penumbral flow in acute stroke. Stroke, 46, 2795-2799(2015).
[38] M. Y. Shi, S. H. Liu, H. Y. Chen, W. Geng, X. D. Yin, Y. C. Chen, L. P. Wang. Disrupted brain functional network topology in unilateral acute brainstem ischemic stroke. Brain Imaging Behav., 15, 444-452(2021).
[39] S. C. Cramer, G. Nelles, R. R. Benson, J. D. Kaplan, R. A. Parker, K. K. Kwong, D. N. Kennedy, S. P. Finklestein, B. R. Rosen. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke, 28, 2518-2527(1997).
[40] A. B. McCambridge, J. W. Stinear, W. D.. Byblow. Revisiting interhemispheric imbalance in chronic stroke: A tDCS study. Clin. Neurophysiol., 129, 42-50(2018).
[41] P. Caliandro, F. Vecchio, F. Miraglia, G. Reale, G. Della Marca, G. La Torre, G. Lacidogna, C. Iacovelli, L. Padua, P. Bramanti, P. M. Rossini. Small-World Characteristics of Cortical Connectivity Changes in Acute Stroke. Neurorehabil Neural Repair., 31, 81-94(2017).
[42] K. M. Arun, K. A. Smitha, P. N. Sylaja, C. Kesavadas. Identifying resting-state functional connectivity changes in the motor cortex using fNIRS during recovery from stroke. Brain Topogr., 33, 710-719(2020).
[43] D. Z. Yin, F. Song, D. R. Xu, B. S. Peterson, L. M. Sun, W. W. Men, X. Yan, M. X. Fan. Patterns in cortical connectivity for determining outcomes in hand function after subcortical stroke. PLoS One, 7, e52727(2012).
[44] M. D. Fox. Mapping symptoms to brain networks with the human connectome. N. Engl. J. Med., 379, 2237-2245(2018).
[45] E. Carrera, G. Tononi. Diaschisis: Past, present, future. Brain, 137, 2408-2422(2014).
[46] J. A. Noah, X. Zhang, S. Dravida, C. DiCocco, T. Suzuki, R. N. Aslin, I. Tachtsidis, J. Hirsch. Comparison of short-channel separation and spatial domain filtering for removal of non-neural components in functional near-infrared spectroscopy signals. Neurophotonics, 8, 015004(2021).
Get Citation
Copy Citation Text
Yizheng Zhang, Dan Wang, Dongyang Wang, Kecheng Yan, Li Yi, Shuoshu Lin, Guangjian Shao, Zhiyong Shao, Jinyan Sun, Aoran Yang. Motor network reorganization in stroke patients with dyskinesias during a shoulder-touching task: A fNIRS study[J]. Journal of Innovative Optical Health Sciences, 2023, 16(6): 2340003
Category: Research Articles
Received: Jan. 17, 2023
Accepted: May. 3, 2023
Published Online: Dec. 23, 2023
The Author Email: Sun Jinyan (jinyansun@fosu.edu.cn), Yang Aoran (yppyar@126.com)