Semiconductor Optoelectronics, Volume. 43, Issue 1, 100(2022)
Research Progresses of Ultraviolet Photodetector Based on Zinc Oxide
[1] [1] Duan Y, Cong M, Jiang D, et al. ZnO thin film flexible UV photodetectors: Regulation on the ZnO/Au interface by piezo-phototronic effect and performance outcomes[J]. Advanced Materials Interfaces, 2019, 6(16): 201900470.
[2] [2] Xuan Z, Jiang D, Yang X, et al. Voltage-dependent responsivity of ZnO Schottky UV photodetectors with different electrode spacings[J]. Sensors and Actuators A: Physical, 2018, 284: 12-16.
[3] [3] Zhao X, Jiang D, Zhao M, et al. Avalanche effect and high external quantum efficiency in MgZnO/Au/ZnO sandwich structure photodetector[J]. Advanced Optical Materials, 2021, 9(8): 2002023.
[4] [4] Pimentel A, Nunes D, Duarte P, et al. Synthesis of long ZnO nanorods under microwave irradiation or conventional heating[J]. The J. of Physical Chemistry C, 2014, 118(26): 14629-14639.
[5] [5] Mishra Y K, Modi G, Cretu V, et al. Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection, and gas sensing[J]. ACS Appl. Materials & Interfaces, 2015, 7(26): 14303.
[6] [6] Deka Boruah B, Misra A. Energy efficient hydrogenated-zinc oxide nanoflakes for high performance self powered ultraviolet photodetector[J]. ACS Appl. Materials & Interfaces, 2016, 8(28): 18182-18188.
[7] [7] Li F, Meng Y, Dong R, et al. High-performance transparent ultraviolet photodetectors based on InGaZnO superlattice nanowire arrays[J]. ACS Nano, 2019, 13(10): 12042-12051.
[8] [8] Young S J, Liu Y H, Chang S J, et al. Fabrication of silicon dioxide by photo-chemical vapor deposition to decrease detector current of ZnO ultraviolet photodetectors[J]. ACS Omega, 2020, 5(42): 27566-27571.
[9] [9] Zhu Y, Liu K, Ai Q, et al. A high performance self-powered ultraviolet photodetector based on a p-GaN/n-ZnMgO heterojunction[J]. J. of Materials Chemistry C, 2020, 8(8): 2719-2724.
[10] [10] Wang Z H, Yu H C, Yang C C, et al. Low-frequency noise performance of Al-doped ZnO nanorod photosensors by a low-temperature hydrothermal method[J]. IEEE Trans. on Electron Devices, 2017, 64(8): 1-7.
[11] [11] Santoshkumar B, Kalyanaraman S, Thangavel R, et al. Experimental and theoretical analyses of the nonlinear optical effects in magnesium and copper co-doped zinc oxide nanorods[J]. J. of Alloys and Compounds, 2018, 734: 275-281.
[12] [12] Ajmal H, Khan F, Nam K, et al. Ultraviolet photodetection based on high-performance Co-Plus-Ni doped ZnO nanorods grown by hydrothermal method on transparent plastic substrate[J]. Nanomaterials, 2020, 10(6): 10061225.
[13] [13] Sarkar A, Gogurla N, Bhaktha B N S, et al. Plasmonic enhanced optical characteristics of Ag nanostructured ZnO thin films[J]. Materials Research Express, 2016, 3(4): 046403.
[14] [14] Rana V S, Rajput J K, Pathak T K, et al. Multilayer MgZnO/ZnO thin films for UV photodetectors[J]. J. of Alloys and Compounds, 2018, 764: 724-729.
[15] [15] Cook B, Gong M, Corbin A, et al. Inkjet-printed imbedded graphene nanoplatelet/zinc oxide bulk heterojunctions nanocomposite films for ultraviolet photodetection[J]. ACS Omega, 2019, 4(27): 22497-22503.
[16] [16] Su L, Liu Q, Zhu Y, et al. Post-annealed structural relaxation and phase evolution of quaternary alloy BeMgZnO[J]. ACS Appl. Electronic Materials, 2019, 1(10): 2061-2068.
[17] [17] Lupan O, Cretu V, Postica V, et al. Silver-doped zinc oxide single nanowire multifunctional nanosensor with a significant enhancement in response[J].Sensors & Actuators B: Chemical, 2016, 223: 893-903.
[18] [18] Shen T, Wang J, Xia Z, et al. Ultraviolet sensing characteristics of Ag-doped ZnO micro-nano fiber[J]. Sensors and Actuators A: Physical, 2020, 307: 111989.
[19] [19] Shabannia R. High-sensitivity UV photodetector based on oblique and vertical Co-doped ZnO nanorods[J]. Materials Lett., 2018, 214: 254-256.
[20] [20] Hsu C L, Gao Y D, Chen Y S, et al. Vertical p-type Cu-doped ZnO/n-type ZnO homojunction nanowire-based ultraviolet photodetector by the furnace system with hotwire assistance[J]. ACS Appl. Materials & Interfaces, 2014, 6(6): 4277-4285.
[21] [21] Shabannia R. A high photocurrent gain in UV photodetector based on Cu doped ZnO nanorods on PEN substrate[J]. J. of Materials Science: Materials in Electronics, 2018, 29(14): 11646-11652.
[22] [22] Chey C O, Masood A, Riazanova A, et al. Synthesis of Fe-doped ZnO nanorods by rapid mixing hydrothermal method and its application for high performance UV photodetector[J]. J. of Nanomaterials, 2014: 1-9.
[23] [23] Salah M, Azizi S, Boukhachem A, et al. Structural, morphological, optical and photodetector properties of sprayed Li-doped ZnO thin films[J]. J. of Materials Science, 2017, 52(17): 10439-10454.
[24] [24] Young S J, Liu Y H, Shiblee M, et al. Flexible ultraviolet photodetectors based on one-dimensional gallium-doped zinc oxide nanostructures[J]. ACS Appl. Electronic Materials, 2020, 2(11): 3522-3529.
[25] [25] Lee C T, Lin H Y, Tseng C Y. Nanomesh electrode on MgZnO-based metal-semiconductor-metal ultraviolet photodetectors[J]. Scientific Reports, 2015, 5: 13705.
[26] [26] Li Y, Kuang D, Gao Y, et al. Titania: Graphdiyne nanocomposites for high-performance deep ultraviolet photodetectors based on mixed-phase MgZnO[J]. J. of Alloys and Compounds, 2020, 825: 153882.
[27] [27] Fan M M, Liu K W, Chen X, et al. Mechanism of excellent photoelectric characteristics in mixed-phase ZnMgO ultraviolet photodetectors with single cutoff wavelength[J]. ACS Appl. Mater. Interfaces, 2015, 7(37): 20600-20606.
[28] [28] Young S J, Liu Y H. Low-frequency noise properties of MgZnO nanorod ultraviolet photodetectors with and without UV illumination-ScienceDirect[J]. Sensors and Actuators A: Physical, 2018, 269: 363-368.
[29] [29] Azhar E A, Vanjaria J, Ahn S, et al. Vapor-transport synthesis and annealing study of ZnxMg1-xO nanowire arrays for selective, solar-blind UV-C detection[J]. ACS Omega, 2018, 3(5): 4899-4907.
[30] [30] Zhou H T, Li L, Chen H Y, et al. Realization of a fast-response flexible ultraviolet photodetector employing a metal-semiconductor-metal structure InGaZnO photodiode[J]. RSC Advances, 2015, 5: 87993-87997.
[31] [31] Tian C, Jiang D, Li B, et al. Performance enhancement of ZnO UV photodetectors by surface plasmons[J]. ACS Appl. Mater. Interfaces, 2014, 6: 2162-2166.
[32] [32] Ding H, Shao J, Ding Y, et al. One-dimensional Au-ZnO heteronanostructures for ultraviolet light detectors by a two-step dielectrophoretic assembly method[J]. ACS Appl. Mater. Interfaces, 2015, 7: 12713-12718.
[33] [33] Li M, Zhao M, Jiang D, et al. Optimizing the performance of ZnO/Au/MgZnO/SiO2 sandwich structured UV photodetectors by surface plasmons in Ag nanoparticles[J]. Appl. Phys. A, 2020, 126: 03486.
[34] [34] Duan L, He F, Tian Y, et al. Fabrication of self-powered fast-response ultraviolet photodetectors based on graphene/ZnO∶Al nanorod-array-film structure with stable Schottky barrier[J]. ACS Applied Materials & Interfaces, 2017, 9(9): 8161.
[35] [35] Gong M, Liu Q, Cook B, et al. All-printable ZnO quantum dots/graphene van der Waals heterostructures for ultrasensitive detection of ultraviolet light[J]. ACS Nano, 2017, 4(4): 4114-4123.
[36] [36] Yang J, Liu K, Cheng Z, et al. An investigation of interface effect on the performance of CH3NH3PbCl3/ZnO UV photodetectors[J]. ACS Appl. Materials & Interfaces, 2018, 10(40): 34744-34750.
[37] [37] Zhang, Xiaoyu, Zheng E, Esopi M R, et al. Flexible narrowband ultraviolet photodetectors with photomultiplication based on wide band gap conjugated polymer and inorganic nanoparticles[J]. ACS Appl. Materials & Interfaces, 2018, 10: 24064-24074.
[38] [38] Chen T, Gao X, Zhang J Y, et al. Ultrasensitive ZnO nanowire photodetectors with a polymer electret interlayer for minimizing dark current[J]. Advanced Optical Materials, 2020, 8(4): 1901289.1-1901289.7.
[39] [39] Zheng M, Xu Y, Wang X, et al. ZnO-based ultraviolet photodetectors with tunable spectral responses[J]. Physica Status Solidi(RRL)-Rapid Research Lett., 2019, 13: 201900441.
[40] [40] You D, Xu C, Zhao J, et al. Single-crystal ZnO/AlN core/shell nanowires for ultraviolet emission and dual-color ultraviolet photodetection[J]. Adv. Opt. Materials, 2019, 7(6): 1801522.1-1801522.8.
[41] [41] Wu Z P, Jiao L, Wang X, et al. A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga∶ZnO heterojunction[J]. J. of Materials Chemistry C, 2017, 5: 8688-8693.
[42] [42] Zhao B, Wang F, Chen H, et al. An ultrahigh responsivity (9.7mA·W-1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures[J]. Adv. Functional Materials, 2017, 27: 201700264.
[43] [43] You D, Xu C, Zhao J, et al. Vertically aligned ZnO/Ga2O3 core/shell nanowire arrays as self-driven superior sensitivity solar-blind photodetectors[J]. J. of Materials Chemistry C, 2019, 7: 3056-3063.
[44] [44] Goswami L, Aggarwal N, Singh M, et al. GaN nanotowers grown on Si(111) and functionalized with Au nanoparticles and ZnO nanorods for highly responsive UV photodetectors[J]. Appl. Nano Mater., 2020, 3(8): 8104-8116.
[45] [45] Ning L, Jiang T, Shao Z, et al. Light-trapping enhanced ZnO-MoS2 core-shell nanopillar arrays for broadband ultraviolet-visible-near infrared photodetection[J]. J. of Materials Chemistry C, 2018, 6: 7077-7084.
[46] [46] Zhou Y H, Zhang Z B, Xu P, et al. UV-visible photodetector based on Ⅰ-type heterostructure of ZnO-QDs/monolayer MoS2[J]. Nanoscale Research Lett., 2019, 14(1): 364.
[47] [47] Zhang J, Liu Y, Zhang X, et al. High-performance ultraviolet-visible light-sensitive 2D-MoS2/1D-ZnO heterostructure photodetectors[J]. Chemistry Select., 2020, 5(11): 3438-3444.
[48] [48] Fan M M, Liu K W, Chen X, et al. A self-powered solar-blind ultraviolet photodetector based on a Ag/ZnMgO/ZnO structure with fast response speed[J]. RSC Advances, 2017, 7(22): 13092-13096.
[49] [49] Kuang D, Cheng J, Li X, et al. Dual-ultraviolet wavelength photodetector based on facile method fabrication of ZnO/ZnMgO core/shell nanorod arrays[J]. J. of Alloys and Compounds, 2020, 860: 157917.
[50] [50] Ni P N, Shan C X, Wang S P, et al. Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p-NiO core-shell nanowire arrays[J]. J. of Materials Chemistry C, 2013, 1(29): 4445-4449.
[51] [51] Kim D Y, Ryu J, Manders J, et al. Air-stable, solution-processed oxide p-n heterojunction ultraviolet photodetector[J]. ACS Appl. Mater. Interfaces, 2014, 6(3): 1370-1374.
[52] [52] Wei C, Xu J, Shi S, et al. The improved photoresponse properties of self-powered NiO/ZnO heterojunction arrays UV photodetectors with designed tunable Fermi level of ZnO[J]. J. of Colloid and Interface Science, 2020, 577: 279-289.
[53] [53] Zhang D, Gu X, Jing F, et al. High performance ultraviolet detector based on TiO2/ZnO heterojunction[J]. J. of Alloys and Compounds, 2015, 618: 551-554.
[54] [54] Hsu C L, Wu H Y, Fang C C, et al. Solution-processed UV and visible photodetectors based on Y-doped ZnO nanowires with TiO2 nanosheets and Au nanoparticles[J]. ACS Appl. Energy Materials, 2018, 1: 2087-2095.
[55] [55] Namaa B, Fsha B, Kaea D, et al. Developing high-sensitivity UV sensors based on ZnO nanorods grown on TiO2 seed layer films using solution immersion method[J]. Sensors and Actuators A: Physical, 2020, 302: 111827.
[56] [56] Zhou M, Wu B, Zhang X, et al. Preparation and UV photoelectric properties of aligned ZnO-TiO2 and TiO2-ZnO core-shell structured heterojunction nanotubes[J]. ACS Appl. Materials & Interfaces, 2020, 12: 38490-38498.
Get Citation
Copy Citation Text
KUANG Dan, BIAN Shuguang, XU Shuang, LIU Bin, LIU Xianwen, YU Zhinong. Research Progresses of Ultraviolet Photodetector Based on Zinc Oxide[J]. Semiconductor Optoelectronics, 2022, 43(1): 100
Category:
Received: Oct. 19, 2021
Accepted: --
Published Online: Mar. 24, 2022
The Author Email: Shuguang BIAN (jeanbsg@htrdc.com)