Optics and Precision Engineering, Volume. 29, Issue 10, 2296(2021)

Detection of solar blind ultraviolet communication based on fluorescent wavelength conversion

Jian-bang MAO1... Peng-hui WANG1, Jing-yuan WANG2, Jian-hua LI2 and Wei WEI1,* |Show fewer author(s)
Author Affiliations
  • 1College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing20023, China
  • 2College of Communication Engineering, Army Engineering University of PLA, Nanjing10007, China
  • show less
    References(44)

    [1] G CHEN, Z Y XU, B M SADLER. Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels. Optics Express, 18, 10500-10509(2010).

    [2] D H HAN, Y L LIU, K ZHANG et al. Theoretical and experimental research on diversity reception technology in NLOS UV communication system. Optics Express, 20, 15833-15842(2012).

    [3] [3] 3赵太飞, 郭嘉文, 李晗辰, 等. 无人机航迹中电力线电晕紫外探测与定位[J]. 光学 精密工程, 2019, 27(2): 309-315. doi: 10.3788/ope.20192702.0309ZHAOT F, GUOJ W, LIH CH, et al. Ultraviolet detection and location of power line corona in UAV track[J]. Opt. Precision Eng., 2019, 27(2): 309-315. (in Chinese). doi: 10.3788/ope.20192702.0309

    [4] [4] 4赵太飞, 余叙叙, 包鹤, 等. 无线日盲紫外光测距定位方法[J]. 光学 精密工程, 2017, 25(9): 2324-2332. doi: 10.3788/OPE.20172509.2324ZHAOT F, YUX X, BAOH, et al. Ranging and positioning method using wireless solar blind ultraviolet[J]. Opt. Precision Eng., 2017, 25(9): 2324-2332. (in Chinese). doi: 10.3788/OPE.20172509.2324

    [5] [5] 5高家利, 汪科, 阎卫萍. 基于LED和APD的便携式紫外光通信系统设计[J]. 光电子技术, 2015, 35(1): 49-51, 55. doi: 10.3969/j.issn.1005-488X.2015.01.011GAOJ L, WANGK, YANW P. Design of a hand-held UV communication system based on LED and APD[J]. Optoelectronic Technology, 2015, 35(1): 49-51, 55. (in Chinese). doi: 10.3969/j.issn.1005-488X.2015.01.011

    [6] [6] 6赵明, 肖沙里, 王玺, 等. 基于LED的紫外光通信系统研究[J]. 激光与光电子学进展, 2010, 47(4): 040602. doi: 10.3788/lop47.040602ZHAOM, XIAOSH L, WANGX, et al. Ultraviolet communication system based on deep LED[J]. Laser & Optoelectronics Progress, 2010, 47(4): 040602. (in Chinese). doi: 10.3788/lop47.040602

    [7] [7] 7赵太飞, 何华, 柯熙政. 基于日盲紫外光LED的无线光通信性能研究 [J]. 光电子 激光, 2011, 22 (12): 1797-1801. doi: 10.1007/s11460-011-0118-2ZHAOT F, HEH, KEX ZH. Performance research on wireless optical communication based on solar blind UV LED[J]. Journal of Optoelectronics Laser, 2011, 22 (12): 1797-1801.(in Chinese). doi: 10.1007/s11460-011-0118-2

    [8] H D LI, Y Q LIU, T XING et al. An instantaneous photomultiplier tube gain-tuning method for PET or gamma camera detectors using an LED network. IEEE Transactions on Nuclear Science, 52, 1295-1299(2005).

    [9] M C MAAS, D R SCHAART, DER LAAN D JVAN et al. Signal to noise ratio of APD-based monolithic scintillator detectors for high resolution PET. IEEE Transactions on Nuclear Science, 55, 842-852(2008).

    [10] G CHEN, F ABOU-GALALA, Z Y XU et al. Experimental evaluation of LED-based solar blind NLOS communication links. Optics Express, 16, 15059-15068(2008).

    [11] D B LI, X J SUN, H SONG et al. Realization of a high-performance GaN UV detector by nanoplasmonic enhancement. Advanced Materials, 24, 845-849(2012).

    [12] M MARTENS, J SCHLEGEL, P VOGT et al. High gain ultraviolet photodetectors based on AlGaN/GaN heterostructures for optical switching. Applied Physics Letters, 98, 211114(2011).

    [13] J W LU, X X SHENG, G Q TONG et al. Ultrafast solar-blind ultraviolet detection by inorganic perovskite CsPbX3 quantum dots radial junction architecture. Advanced Materials, 29, 1700400(2017).

    [14] [14] 14胡轶, 胡更新, 张洁静, 等. ZnO纳米棒/CdS量子点的制备及紫外-可见探测性能研究[J]. 中国光学, 2019, 12(6): 1271-1278, 1379. doi: 10.3788/co.20191206.1271HUY, HUG X, ZHANGJ J, et al. Fabrication of ZnO nanorods/CdS quantum dots and its detection performance in UV-Visible waveband [J]. Chinese Optics, 2019, 12(6): 1271-1278, 1379. (in Chinese). doi: 10.3788/co.20191206.1271

    [15] M J ZHANG, L X WANG, L H MENG et al. Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection. Advanced Optical Materials, 6, 1800077(2018).

    [16] L OZAWA, M ITOH. Cathode ray tube p hosphors. Chemical Reviews, 103, 3835-3856(2003).

    [17] X SHENG, C J YU, V MALYARCHUK et al. Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores. Advanced Optical Materials, 2, 314-319(2014).

    [18] L J FENG, Y TIAN, L WANG et al. Tunable emission, energy transfer, and thermal stability of Ce3+-doped and Ce3+/Tb3+ Co-doped Ca9Sr(PO46Cl2 phosphors. Journal of Materials Science, 51, 2841-2849(2016).

    [19] [19] 19李宇星, 杨小天, 初学峰, 等. 氧化锌基纳米结构紫外光电探测器件发展与展望[J]. 传感器世界, 2020, 26(10): 7-15. doi: 10.3969/j.issn.1006-883X.2020.10.002LIY X, YANGX T, CHUX F, et al. Development and prospect of nano ZnO based UV photodetectors[J]. Sensor World, 2020, 26(10): 7-15.(in Chinese). doi: 10.3969/j.issn.1006-883X.2020.10.002

    [20] A AMANY, D B WANG, J Z WANG et al. Enhanced the UV response of AlN coated ZnO nanorods photodetector. Journal of Alloys and Compounds, 776, 111-115(2019).

    [21] [21] 21赵爽, 祝元坤, 王现英. 环境气氛对二维超薄ZnO纳米片紫外探测器性能的影响[J]. 电子科技, 2019, 32(2): 66-69. doi: 10.1016/j.apsusc.2018.09.041ZHAOSH, ZHUY K, WANGX Y. Effect of atmosphere on the performance of ultraviolet detector based on ultrathin ZnO nanosheets [J]. Electronic Science and Technology, 2019, 32(2): 66-69.(in Chinese). doi: 10.1016/j.apsusc.2018.09.041

    [22] J HUANG, B LI, Y HU et al. Transparent p-NiO/n-ZnO heterojunction ultraviolet photodetectors prepared on flexible substrates. Surface and Coatings Technology, 362, 57-61(2019).

    [23] W ZENG, J LI, L P FENG et al. Synthesis of large-area atomically thin BiOI crystals with highly sensitive and controllable photodetection. Advanced Functional Materials, 29, 1900129(2019).

    [24] C H KANG, I DURSUN, G Y LIU et al. High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light: Science & Applications, 8, 94(2019).

    [25] [25] 25张猛蛟, 蔡毅, 江峰, 等. 紫外增强硅基成像探测器进展[J]. 中国光学, 2019, 12(1): 19-37. doi: 10.1088/1674-1056/ac2b20ZHANGM J, CAIY, JIANGF, et al. Progress of UV-enhanced silicon-based imaging detectors [J]. Chinese Optics, 2019, 12(1): 19-37.(in Chinese). doi: 10.1088/1674-1056/ac2b20

    [26] [26] 26李上宾, 黄博扬, 李国强, 等. 红色荧光体增强型硅基光电二极管的频谱响应研究[J]. 新能源进展, 2016, 4(5): 341-344. doi: 10.3969/j.issn.2095-560X.2016.05.001LISH B, HUANGB Y, LIG Q, et al. Enhancement of frequency responsibility of Si PIN-PD via additional red phosphor film [J]. Advances in New and Renewable Energy, 2016, 4(5): 341-344.(in Chinese). doi: 10.3969/j.issn.2095-560X.2016.05.001

    [27] C XIE, X T LU, X W TONG et al. Ultrawide-bandgap semiconductors: recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors (adv. funct. mater. 9/2019). Advanced Functional Materials, 29, 1970057(2019).

    [28] S A HASAN, H TORUN, D GIBSON et al. Flexible UV sensor based on nanostructured ZnO thin film SAW device, 9, 85-90(2019).

    [29] R KHAN, P UTHIRAKUMAR, T H KIM et al. Enhanced photocurrent performance of partially decorated Au nanoparticles on ZnO nanorods based UV photodetector. Materials Research Bulletin, 115, 176-181(2019).

    [30] W LI, Y J GUO, Q B TANG et al. Highly sensitive ultraviolet sensor based on ZnO nanorod film deposited on ST-cut quartz surface acoustic wave devices. Surface and Coatings Technology, 363, 419-425(2019).

    [31] C H KANG, A TRICHILI, O ALKHAZRAGI et al. Ultraviolet-to-blue color-converting scintillating-fibers photoreceiver for 375-nm laser-based underwater wireless optical communication. Optics Express, 27, 30450-30461(2019).

    [32] [32] 32殷长帅, 周剑, 刘翊, 等. 声表面波紫外光探测器的研究进展[J]. 光学 精密工程, 2020, 28(7): 1433-1445. doi: 10.37188/OPE.20202807.1433YINC SH, ZHOUJ, LIUY, et al. Research progress of surface acoustic wave ultraviolet detectors[J]. Opt. Precision Eng., 2020, 28(7): 1433-1445.(in Chinese). doi: 10.37188/OPE.20202807.1433

    [33] [33] 33陈洪宇, 卞万朋, 王月飞,等. CH3NH3PbBr3表面修饰对SnO2基光电探测器性能的影响[J]. 发光学报, 2019, 40(10): 1261-1266. doi: 10.3788/fgxb20194010.1261CHENH Y, BIANW P, WANGY F, et al. Effect of surface decoration of CH3NH3PbBr3 on performance of SnO2-based photodetector[J]. Chinese Journal of Luminescence, 2019, 40(10): 1261-1266.(in Chinese). doi: 10.3788/fgxb20194010.1261

    [34] [34] 34方德胜, 林萍, 吴锋民, 等. 甲胺基铅卤钙钛矿单晶探测器在紫外光下的光电探测性能及稳定性[J]. 浙江理工大学学报:自然科学版,2021, 45(1): 48-55.FANGD SH, LINP, WUF M, et al. Photoelectric detection performance and stability of MAPbX3(X=I, Br, Cl)single crystal detectors under ultraviolet light[J]. Journal of Zhejiang Sci-Tech University:Natural Sciences Edition, 2021, 45(1): 48-55.(in Chinese)

    [35] H LIU, X F WEI, Z X ZHANG et al. Microconcave MAPbBr3 single crystal for high-performance photodetector. The Journal of Physical Chemistry Letters, 10, 786-792(2019).

    [36] N KALYVAS, P LIAPARINOS, C MICHAIL et al. Studying the luminescence efficiency of Lu2O3∶ Eu nanophosphor material for digital X-ray imaging applications. Applied Physics A, 106, 131-136(2012).

    [37] N KALIVAS, L COSTARIDOU, I KANDARAKIS et al. Optical gain signal-to-noise ratio transfer efficiency as an index for ranking of phosphor- photodetector combinations used in X-ray medical imaging. Applied Physics A, 78, 915-919(2004).

    [38] Y L XI, J C ZHUANG, W C HAO et al. Recent progress on two-dimensional heterostructures for catalytic, optoelectronic, and energy applications. ChemElectroChem, 6, 2841-2851(2019).

    [39] X Y HUANG, S Y HAN, W HUANG et al. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chemical Society Reviews, 42, 173-201(2013).

    [40] B S RICHARDS. Luminescent layers for enhanced silicon solar cell performance: Down-conversion. Solar Energy Materials and Solar Cells, 90, 1189-1207(2006).

    [41] Y YUAN, R L ZHENG, Q LU et al. Excellent color rendering index and high quantum efficiency of rare-earth-free fluosilicate glass for single-phase white light phosphor. Optics Letters, 41, 3122(2016).

    [42] R L ZHENG, K XU, J Y DING et al. Efficient solar-blind ultraviolet detection based on a Sn2+ ion-activated fluosilicate glass. Optics Letters, 45, 2140(2020).

    [43] H MASAI, Y HINO, T YANAGIDA et al. High energy-transfer rate from Sn2+ to Mn2+ in phosphate glasses. Optical Materials Express, 5, 617(2015).

    [44] SANEHIRA E M, MARSHALL A R, CHRISTIANS J A, et al, SANEHIRA E M, MARSHALL A R, CHRISTIANS J A, et al, SANEHIRA E M, MARSHALL A R, CHRISTIANS J A, et al. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Science Advances, 3(2017).

    Tools

    Get Citation

    Copy Citation Text

    Jian-bang MAO, Peng-hui WANG, Jing-yuan WANG, Jian-hua LI, Wei WEI. Detection of solar blind ultraviolet communication based on fluorescent wavelength conversion[J]. Optics and Precision Engineering, 2021, 29(10): 2296

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Modern Applied Optics

    Received: May. 8, 2021

    Accepted: --

    Published Online: Nov. 23, 2021

    The Author Email: WEI Wei (weiwei@njupt.edu.cn)

    DOI:10.37188/OPE.2021.0277

    Topics