Opto-Electronic Engineering, Volume. 47, Issue 3, 190687(2020)
Progress and prospect of high-speed visible light communication
[1] [1] Chi N, Haas H, Kavehrad M, et al. Visible light communications: demand factors, benefits and opportunities[Guest Editorial][J]. IEEE Wireless Communications, 2015, 22(2): 5-7.
[2] [2] Chi N. LED Visible Light Communication Technologies[M]. Beijing: Tsinghua University Press, 2013.
[3] [3] Chi N, Shi M, Ha Y, et al. LiFi: development status and prospects of visible light communication technology[J]. China Illuminating Engineering Journal, 2019, 30(1): 1-9, 24.
[4] [4] Chi N. The transmitter of the visible light communication system[M]//Chi N. LED-Based Visible Light Communications. Berlin, Heidelberg: Springer, 2018: 13-38.
[5] [5] Fujieda I, Kosugi T, Inaba Y. Speckle noise evaluation and reduction of an edge-lit backlight system utilizing laser diodes and an optical fiber[J]. Journal of Display Technology, 2009, 5(11): 414-417.
[6] [6] Zhao Y J, Fu H Q, Wang G T, et al. Toward ultimate efficiency: progress and prospects on planar and 3D nanostructured nonpolar and semipolar InGaN light-emitting diodes[J]. Advances in Optics and Photonics, 2018, 10(1): 246-308.
[7] [7] Shen C, Lee C, Ng T K, et al. High-speed 405-nm Superluminescent Diode (SLD) with 807-MHz modulation bandwidth[J]. Optics Express, 2016, 24(18): 20281-20286.
[8] [8] Zhou Y J, Zhu X, Hu F C, et al. Common-anode LED on a Si substrate for beyond 15 Gbit/s underwater visible light communication[J]. Photonics Research, 2019, 7(9): 1019-1029.
[9] [9] Maaskant P P, Shams H, Akhter M, et al. High-speed substrate-emitting micro-light-emitting diodes for applications requiring high radiance[J]. Applied Physics Express, 2013, 6(2): 022102.
[10] [10] Ferreira R X G, Xie E Y, McKendry J J D, et al. High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications[J]. IEEE Photonics Technology Letters, 2016, 28(19): 2023-2026.
[11] [11] Islim M S, Ferreira R X, He X Y, et al. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED[J]. Photonics Research, 2017, 5(2): A35-A43.
[12] [12] Zhu S C, Yu Z G, Liu L, et al. Enhancing the spontaneous emission rate by modulating carrier distribution in GaN-based surface plasmon light-emitting diodes[J]. Optics Express, 2017, 25(9): 9617-9627.
[13] [13] Li J H, Huang X X, Ji X M, et al. An integrated PIN-array receiver for visible light communication[J]. Journal of Optics, 2015, 17(10): 105805.
[14] [14] Yang H D, Kil Y H, Yang J H, et al. Characterization of n-Ge/i-Ge/p-Si PIN photo-diode[J]. Materials Science in Semiconductor Processing, 2014, 22: 37-43.
[15] [15] Li J H, Wang F M, Zhao M M, et al. Large-coverage underwater visible light communication system based on blue LED employing equal gain combining with integrated PIN array reception[J]. Applied Optics, 2019, 58(2): 383-388.
[16] [16] Wang C, Yu H Y, Zhu Y J. A long distance underwater visible light communication system with single photon avalanche diode[J]. IEEE Photonics Journal, 2016, 8(5): 7906311.
[17] [17] Ji Y W, Wu G F, Wang C, et al. Experimental study of SPAD-based long distance outdoor VLC systems[J]. Optics Communications, 2018, 424: 7-12.
[18] [18] Karbalayghareh M, Miramirkhani F, Safari M, et al. Vehicular visible light communications with SPAD receivers[C]//Proceedings of 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 2019: 1-5.
[19] [19] Huang X X, Shi J Y, Li J H, et al. 750Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit[C]//Proceedings of 2015 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 2015: 1-3.
[20] [20] Wang F M, Liu Y F, Shi M, et al. 3.075 Gb/s underwater visible light communication utilizing hardware pre-equalizer with multiple feature points[J]. Optical Engineering, 2019, 58(5): 056117.
[21] [21] Wang Y G, Tao L, Huang X X, et al. 8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer[J]. IEEE Photonics Journal, 2015, 7(6): 7904507.
[22] [22] Zou P, Liu Y F, Wang F M, et al. Mitigating nonlinearity characteristics of gray-coding square 8QAM in underwater VLC system[C]//Proceedings of 2018 Asia Communications and Photonics Conference (ACP), Hangzhou, China, 2018: 1-3.
[23] [23] Le Minh H, O'Brien D, Faulkner G, et al. 80 Mbit/s visible light communications using pre-equalized white LED[C]// Proceedings of the 34th European Conference on Optical Communication, Brussels, Belgium, 2008.
[24] [24] Vucic J, Kottke C, Nerreter S, et al. White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation[J]. IEEE Photonics Technology Letters, 2009, 21(20): 1511-1513.
[25] [25] Vucic J, Kottke C, Nerreter S, et al. 513 Mbit/s visible light communications link based on DMT-modulation of a white LED[J]. Journal of Lightwave Technology, 2010, 28(24): 3512-3518.
[26] [26] Vucic J, Kottke C, Habel K, et al. 803 Mbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary[C]//Proceedings of 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Los Angeles, CA, USA, 2011.
[27] [27] Cossu G, Khalid A M, Choudhury P, et al. 2.1 Gbit/s visible optical wireless transmission[C]//Proceedings of the 38th European Conference and Exhibition on Optical Communications, Amsterdam, Netherlands, 2012.
[28] [28] Wu F M, Lin C T, Wei C C, et al. 3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation[C]//Proceedings of 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Anaheim, CA, USA, 2013.
[29] [29] Wang Y Q, Huang X X, Zhang J W, et al. Enhanced performance of visible light communication employing 512-QAM N-SC-FDE and DD-LMS[J]. Optics Express, 2014, 22(13): 15328-15334.
[30] [30] Cossu G, Wajahat A, Corsini R, et al. 5.6 Gbit/s downlink and 1.5 Gbit/s uplink optical wireless transmission at indoor distances (>= 1.5 m)[C]//Proceedings of 2014 The European Conference on Optical Communication (ECOC), Cannes, France, 2014.
[31] [31] Wang Y G, Tao L, Huang X X, et al. 8-Gb/s RGBY LED- based WDM VLC system employing high-order CAP modulation and hybrid post equalizer[J]. IEEE Photonics Journal, 2015, 7(6): 7904507.
[32] [32] Chi N, Shi J Y, Zhou Y J, et al. High speed LED based visible light communication for 5G wireless backhaul[C]//Proceedings of 2016 IEEE Photonics Society Summer Topical Meeting Series (SUM), Newport Beach, CA, USA, 2016.
[33] [33] Chun H, Rajbhandari S, Faulkner G, et al. LED based wavelength division multiplexed 10 Gb/s visible light communications[J]. Journal of Lightwave Technology, 2016, 34(13): 3047-3052.
[34] [34] Wang Y Q, Shi J Y, Yang C, et al. Integrated 10 Gb/s multilevel multiband passive optical network and 500 Mb/s indoor visible light communication system based on Nyquist single carrier frequency domain equalization modulation[J]. Optics Letters, 2014, 39(9): 2576-2579.
[35] [35] Wang Y G, Chi N, Wang Y Q, et al. Network architecture of a high-speed visible light communication local area network[J]. IEEE Photonics Technology Letters, 2015, 27(2): 197-200.
[36] [36] Rehman S U, Ullah S, Chong P H J, et al. Visible light communication: a system perspective—overview and challenges[J]. Sensors, 2019, 19(5): 1153.
[37] [37] Shao S H, Khreishah A, Ayyash M, et al. Design and analysis of a visible-light-communication enhanced WiFi system[J]. Journal of Optical Communications and Networking, 2015, 7(10): 960-973.
[38] [38] Hammouda M, Akln S, Vegni A M, et al. Hybrid RF/LC Systems under QoS Constraints[C]//Proceedings of the 25th International Conference on Telecommunications (ICT), St. Malo, France, 2018: 312-318.
[39] [39] Alresheedi M T, Hussein A T, Elmirghani J M H. Uplink design in VLC systems with IR sources and beam steering[J]. IET Communications, 2017, 11(3): 311-317.
[40] [40] Chi N, Hu F C, Zhou Y J. The challenges and prospects of high-speed visible light communication technology[J]. ZTE Technology Journal, 2019, 25(5): 56-61.
[41] [41] Duntley S Q. Light in the sea[J]. Journal of the Optical Society of America, 1963, 53(2): 214-233.
[42] [42] Nakamura K, Mizukoshi I, Hanawa M. Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel[J]. Optics Express, 2015, 23(2): 1558-1566.
[43] [43] Shen C, Guo Y J, Oubei H M, et al. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate[J]. Optics Express, 2016, 24(22): 25502-25509.
[44] [44] Ho C M, Lu C K, Lu H H, et al. A 10m/10Gbps underwater wireless laser transmission system[C]//Proceedings of 2017 Optical Fiber Communications Conference and Exhibition, Los Angeles, CA, USA, 2017.
[45] [45] Huang X H, Li C Y, Lu H H, et al. 6-m/10-Gbps underwater wireless red-light laser transmission system[J]. Optical Engineering, 2018, 57(6): 066110.
[46] [46] Zou P, Liu Y F, Wang F M, et al. Enhanced performance of odd order square geometrical shaping QAM constellation in underwater and free space VLC system[J]. Optics Communications, 2019, 438: 132-140.
[47] [47] Wang P L, Li C, Xu Z Y. A cost-efficient real-time 25 Mb/s system for LED-UOWC: design, channel coding, FPGA implementation, and characterization[J]. Journal of Lightwave Technology, 2018, 36(13): 2627-2637.
[48] [48] Wang F M, Liu Y F, Shi M, et al. 3.075 Gb/s underwater visible light communication utilizing hardware pre-equalizer with multiple feature points[J]. Optical Engineering, 2019, 58(5): 056117.
[49] [49] Lu C H, Wang J M, Li S B, et al. 60m/2.5 Gbps underwater optical wireless communication with NRZ-OOK modulation and digital nonlinear equalization[C]//2019 Conference on Lasers and Electro-Optics (CLEO).IEEE, 2019: 1-2.
[50] [50] Wang J M, Lu C H, Li S B, et al. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J]. Optics Express, 2019, 27(9): 12171-12181.
[51] [51] Cochenour B M, Mullen L J, Laux A E. Characterization of the beam-spread function for underwater wireless optical communications links[J]. IEEE Journal of Oceanic Engineering, 2008, 33(4): 513-521.
[52] [52] Tang S J, Dong Y H, Zhang X D. Impulse response modeling for underwater wireless optical communication links[J]. IEEE Transactions on Communications, 2014, 62(1): 226-234.
[53] [53] Zedini E, Oubei H M, Kammoun A, et al. Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems[J]. IEEE Transactions on Communications, 2019, 67(4): 2893-2907.
[54] [54] Kanungo T, Mount D M, Netanyahu N S, et al. An efficient k-means clustering algorithm: analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881-892.
[55] [55] Khan K, Rehman S U, Aziz K, et al. DBSCAN: past, present and future[C]//Proceedings of the 5th International Conference on the Applications of Digital Information and Web Technologies, Bangalore, India, 2014.
[56] [56] Ma J, He J, Shi J, et al. Nonlinear compensation based on k-means clustering algorithm for Nyquist PAM-4 VLC system[J]. IEEE Photonics Technology Letters, 2019, 31(12): 935-938.
[57] [57] Lu X Y, Wang K H, Qiao L, et al. Nonlinear compensation of multi-CAP VLC system employing clustering algorithm based perception decision[J]. IEEE Photonics Journal, 2017, 9(5): 7906509.
[58] [58] Lu X Y, Zhou Y J, Qiao L, et al. Amplitude jitter compensation of PAM-8 VLC system employing time-amplitude two-dimensional re-estimation base on density clustering of machine learning[J]. Physica Scripta, 2019, 94(5): 055506.
[59] [59] Shi M, Zhao Y H, Yu W X, et al. Enhanced performance of PAM7 MISO underwater VLC system utilizing machine learning algorithm based on DBSCAN[J]. IEEE Photonics Journal, 2019, 11(4): 7905013.
[60] [60] Chen C, Deng X, Yang Y B, et al. LED nonlinearity estimation and compensation in VLC systems using probabilistic Bayesian learning[J]. Applied Sciences, 2019, 9(13): 2711.
[61] [61] Zhang G W, Hong X J, Fei C, et al. Sparsity-aware nonlinear equalization with greedy algorithms for LED-based visible light communication systems[J]. Journal of Lightwave Technology, 2019, 37(20): 5273-5281.
[62] [62] Chi N, Zhao Y H, Shi M, et al. Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system[J]. Optics Express, 2018, 26(20): 26700-26712.
[63] [63] Lu X Y, Lu C, Yu W X, et al. Memory-controlled deep LSTM neural network post-equalizer used in high-speed PAM VLC system[J]. Optics Express, 2019, 27(5): 7822-7833.
[64] [64] Zhao Y H, Zou P, Yu W X, et al. Two tributaries heterogeneous neural network based channel emulator for underwater visible light communication systems[J]. Optics Express, 2019, 27(16): 22532-22541.
Get Citation
Copy Citation Text
Chi Nan, Chen Hui. Progress and prospect of high-speed visible light communication[J]. Opto-Electronic Engineering, 2020, 47(3): 190687
Received: Nov. 13, 2019
Accepted: --
Published Online: Apr. 5, 2020
The Author Email: Nan Chi (nanchi@fudan.edu.cn)