Journal of the Chinese Ceramic Society, Volume. 51, Issue 7, 1670(2023)
Preparation of Cation-Disordered Li3V2O5 Nanorod Cathode Materials and Improvement of Their Electrochemical Stability
[1] [1] LI J L, FLEETWOOD J, HAWLEY W B, et al. From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing[J]. Chem Rev, 2022, 122(1): 903-956.
[2] [2] CAMARGOS P H, DOS SANTOS P H J, DOS SANTOS I R, et al. Perspectives on Li-ion battery categories for electric vehicle applications: A review of state of the art[J]. Int J Energy Res, 2022, 46(13): 19258-19268.
[3] [3] WEISS M, RUESS R, KASNATSCHEEW J, et al. Fast charging of lithium-ion batteries: a review of materials aspects[J]. Adv Energy Mater, 2021, 11(33): 2101126.
[4] [4] XIA Y, ZHENG J M, WANG C M, et al. Designing principle for Ni-rich cathode materials with high energy density for practical applications[J]. Nano Energy, 2018, 49: 434-452.
[8] [8] YUE Y, LIANG H. Micro- and nano-structured vanadium pentoxide (V2O5) for electrodes of lithium-ion batteries[J]. Adv Energy Mater, 2017, 7(17): 1602545.
[9] [9] CHRISTENSEN C, SRENSEN D R, HVAM J, et al. Structural evolution of disordered LixV2O5 bronzes in V2O5 cathodes for Li-ion batteries[J]. Chem Mater, 2019, 31(2): 512-520.
[10] [10] LIU H D, ZHU Z Y, YAN Q Z, et al. A disordered rock salt anode for fast-charging lithium-ion batteries[J]. Nature, 2020, 585(7823): 63-67.
[11] [11] LI B X, XU Y, RONG G X, et al. Vanadium pentoxide nanobelts and nanorolls: from controllable synthesis to investigation of their electrochemical properties and photocatalytic activities[J]. Nanotechnology, 2006, 17(10): 2560-2566.
[12] [12] KONG D B, LI X L, ZHANG Y B, et al. Encapsulating V2O5 into carbon nanotubes enables the synthesis of flexible high-performance lithium ion batteries[J]. Energy Environ Sci, 2016, 9(3): 906-911.
[13] [13] PAN J, LI M, LUO Y Y, et al. Microwave-assisted hydrothermal synthesis of V2O5 nanorods assemblies with an improved Li-ion batteries performance[J]. Mater Res Bull, 2016, 74: 90-95.
[14] [14] LUO Y T, BAI Y, MISTRY A, et al. Effect of crystallite geometries on electrochemical performance of porous intercalation electrodes by multiscale operando investigation[J]. Nat Mater, 2022, 21(2): 217-227.
[15] [15] GU G, SCHMID M, CHIU P W, et al. V2O5 nanofibre sheet actuators[J]. Nat Mater, 2003, 2(5): 316-319.
[16] [16] YU H, RUI X H, TAN H T, et al. Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries[J]. Nanoscale, 2013, 5(11): 4937-4943.
[17] [17] BAGUS P S, SOUSA C, ILLAS F. Consequences of electron correlation for XPS binding energies: representative case for C(1s) and O(1s) XPS of CO[J]. J Chem Phys, 2016, 145(14): 144303.
[18] [18] TANG W J, ZHOU G J, CAO J, et al. Recent advances of mesoscale-structured cathode materials for high energy density lithium-ion batteries[J]. ACS Appl Energy Mater, 2021, 4(4): 2962-2975..
[19] [19] ZHENG Y Z, DING H Y, UCHAKER E, et al. Nickel-mediated polyol synthesis of hierarchical V2O5 hollow microspheres with enhanced lithium storage properties[J]. J Mater Chem A, 2015, 3(5): 1979-1985.
[20] [20] RAMASAMI A K, REDDY M V, NITHYADHARSENI P, et al. Gel-combustion synthesized vanadium pentoxide nanowire clusters for rechargeable lithium batteries[J]. J Alloys Compd, 2017, 695: 850-858.
[21] [21] SASIDHARAN M, GUNAWARDHANA N, NOMA H, et al. α-MoO3 hollow nanospheres as an anode material for Li-ion batteries[J]. Bull Chem Soc Jpn, 2012, 85(5): 642-646.
[22] [22] PAN A Q, LIU J, ZHANG J G, et al. Template free synthesis of LiV3O8nanorods as a cathode material for high-rate secondary lithium batteries[J]. J Mater Chem, 2011, 21(4): 1153-1161.
[23] [23] GUO J Y, ZHANG Z Y, GUAN T, et al. Photoredox-catalyzed stereoselective alkylation of enamides with N-hydroxyphthalimide esters via decarboxylative cross-coupling reactions[J]. Chem Sci, 2019, 10(38): 8792-8798.
[24] [24] CHEN Z X, ZHANG W X, YANG Z H. A review on cathode materials for advanced lithium ion batteries: Microstructure designs and performance regulations[J]. Nanotechnology, 2020, 31(1): 012001.
[25] [25] TANG W J, CHEN Z X, HUANG H J, et al. PVP-bridged γ-LiAlO2 nanolayer on Li1.2Ni0.182Co0.08Mn0.538O2 cathode materials for improving the rate capability and cycling stability[J]. Chem Eng Sci, 2020, 229: 116126.
[26] [26] CUI Z H, GUO X, REN J Q, et al. Enhanced electrochemical performance and storage mechanism of LiFePO4 doped by Co, Mn and S elements for lithium-ion batteries[J]. Electrochim Acta, 2021, 388: 138592
Get Citation
Copy Citation Text
WANG Can, CAO Shicheng, LI Afei, HU Chengzhi, WANG Guoxian, LIU Zhibao, CHEN Kai, WANG Changping, CHEN Zhangxian. Preparation of Cation-Disordered Li3V2O5 Nanorod Cathode Materials and Improvement of Their Electrochemical Stability[J]. Journal of the Chinese Ceramic Society, 2023, 51(7): 1670
Category:
Received: Mar. 10, 2023
Accepted: --
Published Online: Oct. 7, 2023
The Author Email: Can WANG (hfutwangcan@163.com)
CSTR:32186.14.