Optics and Precision Engineering, Volume. 32, Issue 15, 2334(2024)
Flexible ultrablack surface with high absorption performance
[1] H Y LI, C SHEN, S SUN et al. Magnetically assembled ultrablack surface with omnidirectional and broadband light absorption. ACS Applied Materials & Interfaces, 15, 11369-11378(2023).
[2] Y F HUANG, S CHATTOPADHYAY, Y J JEN et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nature Nanotechnology, 2, 770-774(2007).
[3] A POLITANO, P ARGURIO, G DI PROFIO et al. Photothermal membrane distillation for seawater desalination. Advanced Materials, 29, 1603504(2017).
[4] H Q WANG, A DU, X J JI et al. Enhanced photothermal conversion by hot-electron effect in ultrablack carbon aerogel for solar steam generation. ACS Applied Materials & Interfaces, 11, 42057-42065(2019).
[5] L ZHOU, Y L TAN, D X JI et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Science Advances, 2(2016).
[6] Y SHIMIZU, M IMBE, K GODO et al. High-precision flat-plate reference infrared radiator using perfect blackbody composite with a microcavity structure. Applied Optics, 61, 517-522(2022).
[7] K AMEMIYA, Y SHIMIZU, H KOSHIKAWA et al. Supreme-black levels enabled by touchproof microcavity surface texture on anti-backscatter matrix. Science Advances, 9(2023).
[8] K AMEMIYA, H KOSHIKAWA, M IMBE et al. Perfect blackbody sheets from nano-precision microtextured elastomers for light and thermal radiation management. Journal of Materials Chemistry C, 7, 5418-5425(2019).
[9] M J MOGHIMI, G Y LIN, H R JIANG. Broadband and ultrathin infrared stealth sheets. Advanced Engineering Materials, 20, 1800038(2018).
[10] J F TORRES, K TSUDA, Y MURAKAMI et al. Highly efficient and durable solar thermal energy harvesting via scalable hierarchical coatings inspired by stony corals. Energy & Environmental Science, 15, 1893-1906(2022).
[11] L ZHOU, Y L TAN, J Y WANG et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 10, 393-398(2016).
[12] A LENERT, D M BIERMAN et al. A nanophotonic solar thermophotovoltaic device. Nature Nanotechnology, 9, 126-130(2014).
[13] G L ZHU, J J XU, W L ZHAO et al. Constructing black titania with unique nanocage structure for solar desalination. ACS Applied Materials & Interfaces, 8, 31716-31721(2016).
[14] [14] 张建贤, 邹永军, 徐蕾, 等. 消光漆在光学系统的国内外应用[J]. 宇航材料工艺, 2014, 44(6): 88-90. doi: 10.3969/j.issn.1007-2330.2014.06.021ZHANGJ X, ZOUY J, XUL, et al. Matte coating and its application in optical system[J]. Aerospace Materials & Technology, 2014, 44(6): 88-90.(in Chinese). doi: 10.3969/j.issn.1007-2330.2014.06.021
[15] Y Y FU, Y LIU, H LI. Efficient coating fabrication of onion-like carbon nanoparticles via aerosol deposition. Particuology, 53, 58-62(2020).
[16] C TU, W F CAI, X CHEN et al. A 3D-structured sustainable solar-driven steam generator using super-black nylon flocking materials. Small, 15(2019).
[17] J GUO, D D LI, Z C QIAN et al. Carbon vesicles: a symmetry-breaking strategy for wide-band and solvent-processable ultrablack coating materials. Advanced Functional Materials, 30, 1909877(2020).
[18] S S SIWAL, A K SAINI, S RAROTRA et al. Recent advancements in transparent carbon nanotube films: chemistry and imminent challenges. Journal of Nanostructure in Chemistry, 11, 93-130(2021).
[19] F DE NICOLA, P HINES, M DE CRESCENZI et al. Moth-eye effect in hierarchical carbon nanotube anti-reflective coatings. Carbon, 108, 262-267(2016).
[20] K H CUI, B L WARDLE. Breakdown of native oxide enables multifunctional, free-form carbon nanotube–metal hierarchical architectures. ACS Applied Materials & Interfaces, 11, 35212-35220(2019).
[21] [21] 郝云彩, 余成武, 梁士通, 等. 新一代星敏感器遮光罩: 碳纳米管遮光罩技术研究[J]. 空间控制技术与应用, 2016, 42(2): 1-7, 31. doi: 10.3969/j.issn.1674-1579.2016.02.001HAOY C, YUCH W, LIANGSH T, et al. New generation of star tracker baffle-CNT baffle[J]. Aerospace Control and Application, 2016, 42(2): 1-7, 31.(in Chinese). doi: 10.3969/j.issn.1674-1579.2016.02.001
[22] A NAJAR, J CHARRIER, P PIRASTEH et al. Ultra-low reflection porous silicon nanowires for solar cell applications. Optics Express, 20, 16861-16870(2012).
[23] M TOMA, G LOGET, R M CORN. Fabrication of broadband antireflective plasmonic gold nanocone arrays on flexible polymer films. Nano Letters, 13, 6164-6169(2013).
[24] X CHEN, Z C FAN, Y XU et al. Fabrication of biomimic GaAs subwavelength grating structures for broadband and angular-independent antireflection. Microelectronic Engineering, 88, 2889-2893(2011).
[25] T SAISON, C PEROZ, V CHAUVEAU et al. Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films. Bioinspiration & Biomimetics, 3(2008).
[26] J G KIM, H J CHOI, K C PARK et al. Multifunctional inverted nanocone arrays for non-wetting, self-cleaning transparent surface with high mechanical robustness. Small, 10, 2487-2494(2014).
[27] M R LOTZ, C R PETERSEN, C MARKOS et al. Direct nanoimprinting of moth-eye structures in chalcogenide glass for broadband antireflection in the mid-infrared. Optica, 5, 557(2018).
[28] B X ZHENG, W J WANG, G D JIANG et al. Fabrication of broadband antireflective black metal surfaces with ultra-light-trapping structures by picosecond laser texturing and chemical fluorination. Applied Physics B, 122, 180(2016).
[29] T CHEN, W J WANG, T TAO et al. Deposition and melting behaviors for formation of micro/nano structures from nanostructures with femtosecond pulses. Optical Materials, 78, 380-387(2018).
[30] R LOU, G D ZHANG, G Y LI et al. Design and fabrication of dual-scale broadband antireflective structures on metal surfaces by using nanosecond and femtosecond lasers. Micromachines, 11, 20(2019).
[31] L G PROKHOROV, V P MITROFANOV, B KAMAI et al. Measurement of mechanical losses in the carbon nanotube black coating of silicon wafers. Classical and Quantum Gravity, 37(2020).
[32] P BALL. None more black. Nature Materials, 15, 500(2016).
[33] M R DURY, T THEOCHAROUS, N HARRISON et al. Common black coatings-reflectance and ageing characteristics in the 0.32-14.3 μm wavelength range. Optics Communications, 270, 262-272(2007).
[34] Q LIANG, D H DENG, Z W XIAO et al. A novel slide-like cotton-based evaporator with gradient evaporation strategy for seawater resource acquirement. Chemical Engineering Journal, 479, 147222(2024).
[35] P X FAN, B F BAI, M L ZHONG et al. General strategy toward dual-scale-controlled metallic micro-nano hybrid structures with ultralow reflectance. ACS Nano, 11, 7401-7408(2017).
[36] Q Y XIONG, Y LI, Q Y LI et al. Multiscale structure coordinated poly(ether ether ketone)-based black absorber with wide-angle high absorption properties. Advanced Materials Technologies, 8, 2300416(2023).
[37] J F JIN, L LV, L YAN et al. Robust ultrablack film deposited on large-curvature magnesium alloy by atomic layer deposition. Journal of Vacuum Science Technology A: Vacuum Surfaces and Films, 42(2024).
[38] X X DONG, L S CHEN. Ultrabroadband plasmonic absorber based on biomimetic compound eye structures. IEEE Photonics Journal, 10, 2794201(2018).
[39] C SHEN, H Y LI, S SUN et al. Design and optical performance investigation of all-sprayable ultrablack coating. Nano Research, 16, 12901-12909(2023).
[40] F KIANI, F STERL, T V TSOULOS et al. Ultra-broadband and omnidirectional perfect absorber based on copper nanowire/carbon nanotube hierarchical structure. ACS Photonics, 7, 366-374(2020).
[41] C S YUNG, N A TOMLIN, K HEUERMAN et al. Plasma modification of vertically aligned carbon nanotubes: Superhydrophobic surfaces with ultra-low reflectance. Carbon, 127, 195-201(2018).
[42] X LI, M LI, H J LIU. Effective strategy to achieve a metal surface with ultralow reflectivity by femtosecond laser fabrication. Chinese Optics Letters, 19(2021).
[43] [43] 乔健, 吴振铎, 彭信翰, 等. Micro-LED芯片激光去除机理及工艺参数优化[J]. 光学 精密工程, 2024, 32(9): 1360-1370. doi: 10.37188/ope.20243209.1360QIAOJ, WUZH D, PENGX H, et al. Mechanism for laser-induced damage bad chip of Micro-LED and optimization of processing parameters[J]. Opt. Precision Eng., 2024, 32(9): 1360-1370.(in Chinese). doi: 10.37188/ope.20243209.1360
[44] [44] 陈绒, 陈钊杰, 谢晋. 微孔气流加压对ITO玻璃激光刻蚀平面度的影响[J]. 光学 精密工程, 2022, 30(13): 1564-1571. doi: 10.37188/OPE.20223013.1564CHENR, CHENZH J, XIEJ. Influence of micropore airflow pressurization on flatness of laser etched ITO glass[J]. Opt. Precision Eng., 2022, 30(13): 1564-1571.(in Chinese). doi: 10.37188/OPE.20223013.1564
Get Citation
Copy Citation Text
Jiazheng WU, Yang AN, Wei LI. Flexible ultrablack surface with high absorption performance[J]. Optics and Precision Engineering, 2024, 32(15): 2334
Category:
Received: May. 7, 2024
Accepted: --
Published Online: Sep. 27, 2024
The Author Email: LI Wei (weili1@ciomp.ac.cn)