Optics and Precision Engineering, Volume. 32, Issue 15, 2334(2024)
Flexible ultrablack surface with high absorption performance
[1] LI H Y, SHEN C, SUN S et al. Magnetically assembled ultrablack surface with omnidirectional and broadband light absorption[J]. ACS Applied Materials & Interfaces, 15, 11369-11378(2023).
[2] HUANG Y F, CHATTOPADHYAY S, JEN Y J et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures[J]. Nature Nanotechnology, 2, 770-774(2007).
[3] POLITANO A, ARGURIO P, DI PROFIO G et al. Photothermal membrane distillation for seawater desalination[J]. Advanced Materials, 29, 1603504(2017).
[4] WANG H Q, DU A, JI X J et al. Enhanced photothermal conversion by hot-electron effect in ultrablack carbon aerogel for solar steam generation[J]. ACS Applied Materials & Interfaces, 11, 42057-42065(2019).
[5] ZHOU L, TAN Y L, JI D X et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Science Advances, 2(2016).
[6] SHIMIZU Y, IMBE M, GODO K et al. High-precision flat-plate reference infrared radiator using perfect blackbody composite with a microcavity structure[J]. Applied Optics, 61, 517-522(2022).
[7] AMEMIYA K, SHIMIZU Y, KOSHIKAWA H et al. Supreme-black levels enabled by touchproof microcavity surface texture on anti-backscatter matrix[J]. Science Advances, 9(2023).
[8] AMEMIYA K, KOSHIKAWA H, IMBE M et al. Perfect blackbody sheets from nano-precision microtextured elastomers for light and thermal radiation management[J]. Journal of Materials Chemistry C, 7, 5418-5425(2019).
[9] MOGHIMI M J, LIN G Y, JIANG H R. Broadband and ultrathin infrared stealth sheets[J]. Advanced Engineering Materials, 20, 1800038(2018).
[10] TORRES J F, TSUDA K, MURAKAMI Y et al. Highly efficient and durable solar thermal energy harvesting via scalable hierarchical coatings inspired by stony corals[J]. Energy & Environmental Science, 15, 1893-1906(2022).
[11] ZHOU L, TAN Y L, WANG J Y et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photonics, 10, 393-398(2016).
[12] LENERT A, BIERMAN D M et al. A nanophotonic solar thermophotovoltaic device[J]. Nature Nanotechnology, 9, 126-130(2014).
[13] ZHU G L, XU J J, ZHAO W L et al. Constructing black titania with unique nanocage structure for solar desalination[J]. ACS Applied Materials & Interfaces, 8, 31716-31721(2016).
[14] [14] 张建贤, 邹永军, 徐蕾, 等. 消光漆在光学系统的国内外应用[J]. 宇航材料工艺, 2014, 44(6): 88-90. doi: 10.3969/j.issn.1007-2330.2014.06.021ZHANGJ X, ZOUY J, XUL, et al. Matte coating and its application in optical system[J]. Aerospace Materials & Technology, 2014, 44(6): 88-90.(in Chinese). doi: 10.3969/j.issn.1007-2330.2014.06.021
[15] FU Y Y, LIU Y, LI H. Efficient coating fabrication of onion-like carbon nanoparticles via aerosol deposition[J]. Particuology, 53, 58-62(2020).
[16] TU C, CAI W F, CHEN X et al. A 3D-structured sustainable solar-driven steam generator using super-black nylon flocking materials[J]. Small, 15(2019).
[17] GUO J, LI D D, QIAN Z C et al. Carbon vesicles: a symmetry-breaking strategy for wide-band and solvent-processable ultrablack coating materials[J]. Advanced Functional Materials, 30, 1909877(2020).
[18] SIWAL S S, SAINI A K, RAROTRA S et al. Recent advancements in transparent carbon nanotube films: chemistry and imminent challenges[J]. Journal of Nanostructure in Chemistry, 11, 93-130(2021).
[19] DE NICOLA F, HINES P, DE CRESCENZI M et al. Moth-eye effect in hierarchical carbon nanotube anti-reflective coatings[J]. Carbon, 108, 262-267(2016).
[20] CUI K H, WARDLE B L. Breakdown of native oxide enables multifunctional, free-form carbon nanotube–metal hierarchical architectures[J]. ACS Applied Materials & Interfaces, 11, 35212-35220(2019).
[21] [21] 郝云彩, 余成武, 梁士通, 等. 新一代星敏感器遮光罩: 碳纳米管遮光罩技术研究[J]. 空间控制技术与应用, 2016, 42(2): 1-7, 31. doi: 10.3969/j.issn.1674-1579.2016.02.001HAOY C, YUCH W, LIANGSH T, et al. New generation of star tracker baffle-CNT baffle[J]. Aerospace Control and Application, 2016, 42(2): 1-7, 31.(in Chinese). doi: 10.3969/j.issn.1674-1579.2016.02.001
[22] NAJAR A, CHARRIER J, PIRASTEH P et al. Ultra-low reflection porous silicon nanowires for solar cell applications[J]. Optics Express, 20, 16861-16870(2012).
[23] TOMA M, LOGET G, CORN R M. Fabrication of broadband antireflective plasmonic gold nanocone arrays on flexible polymer films[J]. Nano Letters, 13, 6164-6169(2013).
[24] CHEN X, FAN Z C, XU Y et al. Fabrication of biomimic GaAs subwavelength grating structures for broadband and angular-independent antireflection[J]. Microelectronic Engineering, 88, 2889-2893(2011).
[25] SAISON T, PEROZ C, CHAUVEAU V et al. Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films[J]. Bioinspiration & Biomimetics, 3(2008).
[26] KIM J G, CHOI H J, PARK K C et al. Multifunctional inverted nanocone arrays for non-wetting, self-cleaning transparent surface with high mechanical robustness[J]. Small, 10, 2487-2494(2014).
[27] LOTZ M R, PETERSEN C R, MARKOS C et al. Direct nanoimprinting of moth-eye structures in chalcogenide glass for broadband antireflection in the mid-infrared[J]. Optica, 5, 557(2018).
[28] ZHENG B X, WANG W J, JIANG G D et al. Fabrication of broadband antireflective black metal surfaces with ultra-light-trapping structures by picosecond laser texturing and chemical fluorination[J]. Applied Physics B, 122, 180(2016).
[29] CHEN T, WANG W J, TAO T et al. Deposition and melting behaviors for formation of micro/nano structures from nanostructures with femtosecond pulses[J]. Optical Materials, 78, 380-387(2018).
[30] LOU R, ZHANG G D, LI G Y et al. Design and fabrication of dual-scale broadband antireflective structures on metal surfaces by using nanosecond and femtosecond lasers[J]. Micromachines, 11, 20(2019).
[31] PROKHOROV L G, MITROFANOV V P, KAMAI B et al. Measurement of mechanical losses in the carbon nanotube black coating of silicon wafers[J]. Classical and Quantum Gravity, 37(2020).
[32] BALL P. None more black[J]. Nature Materials, 15, 500(2016).
[33] DURY M R, THEOCHAROUS T, HARRISON N et al. Common black coatings-reflectance and ageing characteristics in the 0.32-14.3 μm wavelength range[J]. Optics Communications, 270, 262-272(2007).
[34] LIANG Q, DENG D H, XIAO Z W et al. A novel slide-like cotton-based evaporator with gradient evaporation strategy for seawater resource acquirement[J]. Chemical Engineering Journal, 479, 147222(2024).
[35] FAN P X, BAI B F, ZHONG M L et al. General strategy toward dual-scale-controlled metallic micro-nano hybrid structures with ultralow reflectance[J]. ACS Nano, 11, 7401-7408(2017).
[36] XIONG Q Y, LI Y, LI Q Y et al. Multiscale structure coordinated poly(ether ether ketone)-based black absorber with wide-angle high absorption properties[J]. Advanced Materials Technologies, 8, 2300416(2023).
[37] JIN J F, LV L, YAN L et al. Robust ultrablack film deposited on large-curvature magnesium alloy by atomic layer deposition[J]. Journal of Vacuum Science Technology A: Vacuum Surfaces and Films, 42(2024).
[38] DONG X X, CHEN L S. Ultrabroadband plasmonic absorber based on biomimetic compound eye structures[J]. IEEE Photonics Journal, 10, 2794201(2018).
[39] SHEN C, LI H Y, SUN S et al. Design and optical performance investigation of all-sprayable ultrablack coating[J]. Nano Research, 16, 12901-12909(2023).
[40] KIANI F, STERL F, TSOULOS T V et al. Ultra-broadband and omnidirectional perfect absorber based on copper nanowire/carbon nanotube hierarchical structure[J]. ACS Photonics, 7, 366-374(2020).
[41] YUNG C S, TOMLIN N A, HEUERMAN K et al. Plasma modification of vertically aligned carbon nanotubes: Superhydrophobic surfaces with ultra-low reflectance[J]. Carbon, 127, 195-201(2018).
[42] LI X, LI M, LIU H J. Effective strategy to achieve a metal surface with ultralow reflectivity by femtosecond laser fabrication[J]. Chinese Optics Letters, 19(2021).
[43] [43] 乔健, 吴振铎, 彭信翰, 等. Micro-LED芯片激光去除机理及工艺参数优化[J]. 光学 精密工程, 2024, 32(9): 1360-1370. doi: 10.37188/ope.20243209.1360QIAOJ, WUZH D, PENGX H, et al. Mechanism for laser-induced damage bad chip of Micro-LED and optimization of processing parameters[J]. Opt. Precision Eng., 2024, 32(9): 1360-1370.(in Chinese). doi: 10.37188/ope.20243209.1360
[44] [44] 陈绒, 陈钊杰, 谢晋. 微孔气流加压对ITO玻璃激光刻蚀平面度的影响[J]. 光学 精密工程, 2022, 30(13): 1564-1571. doi: 10.37188/OPE.20223013.1564CHENR, CHENZH J, XIEJ. Influence of micropore airflow pressurization on flatness of laser etched ITO glass[J]. Opt. Precision Eng., 2022, 30(13): 1564-1571.(in Chinese). doi: 10.37188/OPE.20223013.1564
Get Citation
Copy Citation Text
Jiazheng WU, Yang AN, Wei LI. Flexible ultrablack surface with high absorption performance[J]. Optics and Precision Engineering, 2024, 32(15): 2334
Category:
Received: May. 7, 2024
Accepted: --
Published Online: Sep. 27, 2024
The Author Email: Wei LI (weili1@ciomp.ac.cn)