Acta Optica Sinica, Volume. 44, Issue 3, 0322003(2024)

Design Method of Off-Axis Reflective Optical System for Freeform Surfaces under Manufacturing Constraints

Yiwei Sun1, Yangjie Wei1、*, Sike Chen1, and Ji Zhao2
Author Affiliations
  • 1College of Computer Science and Engineering, Northeastern University, Shenyang 110819, Liaoning , China
  • 2College of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, Liaoning , China
  • show less
    References(38)

    [1] Hou W, Zhu J, Yang T et al. Construction method through forward and reverse ray tracing for a design of ultra-wide linear field-of-view off-axis freeform imaging systems[J]. Journal of Optics, 17, 055603(2015).

    [2] Zhong X, Ma C, Li Y J et al. Field curvature characteristics and alignment method for the off-axis three-mirror optical system with wide field-of-view[J]. Acta Optica Sinica, 41, 0922001(2021).

    [3] Bai X Q, Xu B Q, Ju G H et al. Aberration compensation strategy for the radius of curvature error of the primary mirror in off-axis three-mirror anastigmatic telescopes[J]. Applied Optics, 60, 6199-6212(2021).

    [4] Bai X Q, Xu B Q, Ma H C et al. Aberration fields of pupil-offset off-axis two-mirror astronomical telescopes induced by ROC error[J]. Optics Express, 28, 30447-30465(2020).

    [5] Bai X Q, Ju G H, Ma H C et al. Aberrational interactions between axial and lateral misalignments in pupil-offset off-axis two-mirror astronomical telescopes[J]. Applied Optics, 58, 7693-7707(2019).

    [6] Ju G H, Ma H C, Gu Z Y et al. Experimental study on the extension of nodal aberration theory to pupil-offset off-axis three-mirror anastigmatic telescopes[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 5, 029001(2019).

    [7] Zhao X X, Song M X, Xu Z L et al. Mueller matrix measurement of off-axis three-mirror telescope objective[J]. Acta Optica Sinica, 43, 1212004(2023).

    [8] Bauer A, Rolland J P. Visual space assessment of two all-reflective, freeform, optical see-through head-worn displays[J]. Optics Express, 22, 13155-13163(2014).

    [9] Cakmakci O, Rolland J P. Head-worn displays: a review[J]. Journal of Display Technology, 2, 199-216(2006).

    [10] Pan J W, Che-Wen C A, Huang K D et al. Demonstration of a broad band spectral head-mounted display with freeform mirrors[J]. Optics Express, 22, 12785-12798(2014).

    [11] Wei S L, Fan Z C, Zhu Z B et al. Design of a head-up display based on freeform reflective systems for automotive applications[J]. Applied Optics, 58, 1675-1681(2019).

    [12] Gu L, Cheng D W, Liu Y et al. Design and fabrication of an off-axis four-mirror system for head-up displays[J]. Applied Optics, 59, 4893-4900(2020).

    [13] Wu Y, Wang L P, Zhang X et al. Design method for an off-axis reflective anamorphic optical system with aberration balance and constraint control[J]. Applied Optics, 60, 4557-4566(2021).

    [14] Liu Y, Li Y Q, Cao Z. Design method of off-axis extreme ultraviolet lithographic objective system with a direct tilt process[J]. Optical Engineering, 54, 075102(2015).

    [15] Miñano J C, Benítez P, Narasimhan B. Freeform aplanatic systems as a limiting case of SMS[J]. Optics Express, 24, 13173-13178(2016).

    [16] Nie Y F, Mohedano R, Benítez P et al. Multifield direct design method for ultrashort throw ratio projection optics with two tailored mirrors[J]. Applied Optics, 55, 3794-3800(2016).

    [17] Yang T, Jin G F, Zhu J. Automated design of freeform imaging systems[J]. Light: Science & Applications, 6, 17081(2017).

    [18] Yang T, Zhu J, Wu X F et al. Direct design of freeform surfaces and freeform imaging systems with a point-by-point three-dimensional construction-iteration method[J]. Optics Express, 23, 10233-10246(2015).

    [19] Yang T, Duan Y Z, Cheng D W et al. Freeform imaging optical system design: theories, development, and applications[J]. Acta Optica Sinica, 41, 0108001(2021).

    [20] Volatier J B, Druart G. Differential method for freeform optics applied to two-mirror off-axis telescope design[J]. Optics Letters, 44, 1174-1177(2019).

    [21] Cheng D W, Wang Y T, Hua H. Free form optical system design with differential equations[J]. Proceedings of SPIE, 7849, 78490Q(2010).

    [22] Chen S K, Wei Y J, Sun Y W et al. Off-axis three-mirror freeform systems design based on improved W-W differential equations[J]. Applied Optics, 62, 3892-3903(2023).

    [23] Fang F Z, Zhang X D, Weckenmann A et al. Manufacturing and measurement of freeform optics[J]. CIRP Annals, 62, 823-846(2013).

    [24] Carbone V, Carocci M, Savio E et al. Combination of a vision system and a coordinate measuring machine for the reverse engineering of freeform surfaces[J]. The International Journal of Advanced Manufacturing Technology, 17, 263-271(2001).

    [25] Burge J H, Zehnder R, Zhao C Y. Optical alignment with computer-generated holograms[J]. Proceedings of SPIE, 6676, 66760C(2007).

    [26] Li Z X, Liu X L, Fang F Z et al. Integrated manufacture of a freeform off-axis multi-reflective imaging system without optical alignment[J]. Optics Express, 26, 7625-7637(2018).

    [27] Li Z X, Fang F Z, Chen J J et al. Machining approach of freeform optics on infrared materials via ultra-precision turning[J]. Optics Express, 25, 2051-2062(2017).

    [28] Brecher C, Lange S, Merz M et al. NURBS based ultra-precision free-form machining[J]. CIRP Annals, 55, 547-550(2006).

    [29] Liu R X, Li Z X, Duan Y T et al. A design for a manufacturing-constrained off-axis four-mirror reflective system[J]. Applied Sciences, 10, 5387(2020).

    [30] Meng Q Y, Wang W, Ma H C et al. Easy-aligned off-axis three-mirror system with wide field of view using freeform surface based on integration of primary and tertiary mirror[J]. Applied Optics, 53, 3028-3034(2014).

    [31] Zheng X, Li Z X, Zhang X D et al. Manufacturing-constrained optical design methodology for cylindrical freeform reflective imaging system[J]. Optics Express, 26, 22547-22562(2018).

    [32] Sun Y H, Sun Y Q, Chen X Y et al. Design of a free-form off-axis three-mirror optical system with a low f-number based on the same substrate[J]. Applied Optics, 61, 7033-7040(2022).

    [33] Chang S T, Lin Y C, Lien C C et al. The design and assembly of a long-focal-length telescope with aluminum mirrors[J]. Proceedings of SPIE, 11180, 111806U(2019).

    [34] Xu C, Lai X M, Cheng D W et al. Automatic optical path configuration variation in off-axis mirror system design[J]. Optics Express, 27, 15251-15261(2019).

    [35] Zhou L J, Yang T, Gao L N et al. Design of freeform off-axis three-mirror system enabling multisurface-integrated fabrication[J]. Acta Optica Sinica, 43, 0822021(2023).

    [36] Duerr F, Thienpont H. Freeform imaging systems: Fermat’s principle unlocks“first time right”design[J]. Light: Science & Applications, 10, 95(2021).

    [37] Bauer A, Schiesser E M, Rolland J P. Starting geometry creation and design method for freeform optics[J]. Nature Communications, 9, 1756(2018).

    [38] Zhong Y, Gross H. Initial system design method for non-rotationally symmetric systems based on Gaussian brackets and Nodal aberration theory[J]. Optics Express, 25, 10016-10030(2017).

    Tools

    Get Citation

    Copy Citation Text

    Yiwei Sun, Yangjie Wei, Sike Chen, Ji Zhao. Design Method of Off-Axis Reflective Optical System for Freeform Surfaces under Manufacturing Constraints[J]. Acta Optica Sinica, 2024, 44(3): 0322003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Jul. 3, 2023

    Accepted: Oct. 21, 2023

    Published Online: Feb. 21, 2024

    The Author Email: Wei Yangjie (weiyangjie@cse.neu.edu.cn)

    DOI:10.3788/AOS231221

    Topics