Spectroscopy and Spectral Analysis, Volume. 38, Issue 11, 3507(2018)
Hyperspectral Image Anomaly Detection Based on Laplasse Constrained Low Rank Representation
[3] [3] Chang C I. Wiley-Interscience, 2013, 81(6): 441.
[4] [4] Manolakis D, Truslow E, Pieper M, et al. IEEE Signal Processing Magazine, 2014, 31(1): 24.
[5] [5] Matteoli S, Diani M, Corsini G. Optical Engineering, 2010, 49(4): 258.
[6] [6] Li W, Du Q. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1463.
[7] [7] Sun W, Liu C, Li J, et al. Journal of Applied Remote Sensing, 2014, 8(1): 083641.
[8] [8] Xu Y, Wu Z, Li J, et al. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 1990.
[9] [9] Liu G, Yan S. Latent Low-Rank Representation for Subspace Segmentation and Feature Extraction, 2011 IEEE International Conference on Computer Vision, 2011: 1615.
[10] [10] Wright J, Ma Y, Mairal J, et al. Proceedings of the IEEE, 2010, 98(6): 1031.
[11] [11] Wen Z, Goldfarb D, Yin W. Mathematical Programming Computation, 2010, 2(3): 203.
[12] [12] Lin Z, Liu R, Su Z. Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation, Advances in Neural Information Processing Systems, 2011: 612.
Get Citation
Copy Citation Text
WANG Jie-chao, SUN Da-peng, ZHANG Chang-xing, XIE Feng, WANG Jian-yu. Hyperspectral Image Anomaly Detection Based on Laplasse Constrained Low Rank Representation[J]. Spectroscopy and Spectral Analysis, 2018, 38(11): 3507
Received: Nov. 3, 2017
Accepted: --
Published Online: Nov. 25, 2018
The Author Email: Jie-chao WANG (15002125138@163.com)