Journal of the Chinese Ceramic Society, Volume. 52, Issue 8, 2517(2024)
Research Progress and Applications of Glass Functionalized with Plasmonic Nanocrystals
[1] [1] STOOKEY S D. Catalyzed crystallization of glass in theory and practice[J]. Ind Eng Chem, 1959, 51(7): 805–808.
[2] [2] ANDERSON V J, LEKKERKERKER H N W. Insights into phase transition kinetics from colloid science[J]. Nature, 2002, 416(6883):811–815.
[3] [3] RUSSO J, TANAKA H. Nonclassical pathways of crystallization in colloidal systems[J]. MRS Bull, 2016, 41(5): 369–374.
[4] [4] WATANABE K, KAWASAKI T, TANAKA H. Structural origin of enhanced slow dynamics near a wall in glass-forming systems[J]. Nat Mater, 2011, 10(7): 512–520.
[5] [5] WEEKS E R, CROCKER J C, LEVITT A C, et al. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition[J]. Science, 2000, 287(5453): 627–631.
[6] [6] GASSER U, WEEKS E R, SCHOFIELD A, et al. Real-space imaging of nucleation and growth in colloidal crystallization[J]. Science, 2001,292(5515): 258–262.
[7] [7] SCIORTINO F, TARTAGLIA P. Glassy colloidal systems[J]. Adv Phys, 2005, 54(6/7): 471–524.
[8] [8] LIU X F, ZHOU J J, ZHOU S F, et al. Transparent glass-ceramics functionalized by dispersed crystals[J]. Prog Mater Sci, 2018, 97:38–96.
[9] [9] FANG Z J, LI Y, ZHANG F T, et al. Enhanced sunlight excited 1-μm emission in Cr3+–Yb3+ codoped transparent glass-ceramics containing Y3Al5O12 nanocrystals[J]. J Am Ceram Soc, 2015, 98(4): 1105–1110.
[10] [10] REDA S M. Synthesis and optical properties of CdS quantum dots embedded in silica matrix thin films and their applications as luminescent solar concentrators[J]. Acta Mater, 2008, 56(2): 259–264.
[11] [11] ZHANG Q Y, HUANG X Y. Recent progress in quantum cutting phosphors[J]. Prog Mater Sci, 2010, 55(5): 353–427.
[12] [12] YE S, ZHU B, CHEN J X, et al. Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals[J]. Appl Phys Lett, 2008, 92(14): 2429.
[13] [13] YE S, ZHU B, LUO J, et al. Enhanced cooperative quantum cutting in Tm3+–Yb3+ codoped glass ceramics containing LaF3 nanocrystals[J].Opt Express, 2008, 16(12): 8989–8994.
[14] [14] CHEN D Q, WANG Y S, YU Y L, et al. Near-infrared quantum cutting in transparent nanostructured glass ceramics[J]. Opt Lett, 2008,33(16): 1884–1886.
[15] [15] CHEN D Q, YU Y L, WANG Y S, et al. Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics[J]. J Phys Chem C, 2009,113(16): 6406–6410.
[16] [16] LIN H, CHEN D Q, YU Y L, et al. Near-infrared quantum cutting in Ho3+/Yb3+ codoped nanostructured glass ceramic[J]. Opt Lett, 2011,36(6): 876–878.
[17] [17] FEDOROV P P, LUGININA A A, POPOV A I. Transparent oxyfluoride glass ceramics[J]. J Fluor Chem, 2015, 172: 22–50.
[19] [19] MING T, CHEN H J, JIANG R B, et al. Plasmon-controlled fluorescence: Beyond the intensity enhancement[J]. J Phys Chem Lett,2012, 3(2): 191–202.
[22] [22] LUTHER J M, JAIN P K, EWERS T, et al. Localized surface plasmon resonances arising from free carriers in doped quantum dots[J]. Nat Mater, 2011, 10(5): 361–366.
[23] [23] NAIK G V, SHALAEV V M, BOLTASSEVA A. Alternative plasmonic materials: Beyond gold and silver[J]. Adv Mater, 2013,25(24): 3264–3294.
[24] [24] COUGHLAN C, IBá?EZ M, DOBROZHAN O, et al. Compound copper chalcogenide nanocrystals[J]. Chem Rev, 2017, 117(9):5865–6109.
[25] [25] AGRAWAL A, CHO S H, ZANDI O, et al. Localized surface plasmon resonance in semiconductor nanocrystals[J].Chem Rev, 2018, 118:3121–3207.
[26] [26] LINK S, EL-SAYED M A. Optical properties and ultrafast dynamics of metallic nanocrystals[J]. Annu Rev Phys Chem, 2003, 54: 331–366.
[27] [27] OBERMEIER J, SCHUMACHER T, LIPPITZ M. Nonlinear spectroscopy of plasmonic nanoparticles[J]. Adv Phys X, 2018, 3(1):1454341.
[28] [28] LINIC S, CHAVEZ S, ELIAS R. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures[J]. Nat Mater, 2021,20(7): 916–924.
[29] [29] LINIC S, ASLAM U, BOERIGTER C, et al. Photochemical transformations on plasmonic metal nanoparticles[J]. Nat Mater, 2015,14(6): 567–576.
[30] [30] QIU J R, JIANG X W, ZHU C S, et al. Manipulation of gold nanoparticles inside transparent materials[J]. Angew Chem Int Ed,2004, 43(17): 2230–2234.
[31] [31] WANG Q Q, HAN J B, GONG H M, et al. Linear and nonlinear optical properties of Ag nanowire polarizing glass[J]. Adv Funct Mater,2006, 16(18): 2405–2408.
[32] [32] TENG Y, QIAN B, JIANG N, et al. Light and heat driven precipitation of copper nanoparticles inside Cu2+-doped borate glasses[J]. Chem Phys Lett, 2010, 485(1–3): 91–94.
[33] [33] TENG Y, ZHOU J J, LUO F F, et al. Controllable space selective precipitation of copper nanoparticles in borosilicate glasses using ultrafast laser irradiation[J]. J Non Cryst Solids, 2011, 357(11–13):2380–2383.
[34] [34] PINCKNEY L .Transparent glass-ceramics based on ZnO crystals [J].Phys Chem Glass: Euro J Glass Sci Tech Part B, 2006, 47(2): 127–130.
[35] [35] ALI M A, XIAN Y H, LIU X F, et al. Self-confined precipitation of ultrasmall plasmonic Cu2–xSe particles in transparent solid medium[J].J Phys Chem C, 2019, 123(14): 9394–9399.
[36] [36] BOUCETTA H, PODOR R, STIEVANO L, et al. Mechanism of RuO2 crystallization in borosilicate glass: An original in situ ESEM approach[J]. Inorg Chem, 2012, 51(6): 3478–3489.
[37] [37] STALMASHONAK A, ABDOLVAND A, SEIFERT G. Metal-glass nanocomposite for optical storage of information[J]. Appl Phys Lett,2011, 99(20): 201904.
[38] [38] TAKEDA Y, LU J, OKUBO N, et al. Optical properties of metal nanoparticles synthesized in insulators by negative ion implantation[J].Vacuum, 2004, 74(3/4): 717–721.
[39] [39] NOGUEZ C. Optical properties of isolated and supported metal nanoparticles[J]. Opt Mater, 2005, 27(7): 1204–1211.
[41] [41] JIMéNEZ J A, SENDOVA M, LIU H M, et al. Supersaturation-driven optical tuning of Ag nanocomposite glasses for photonics: An in situ optical microspectroscopy study[J]. Plasmonics, 2011, 6(2): 399–405.
[42] [42] LI R, PANG C, LI Z Q, et al. Plasmonic nanoparticles in dielectrics synthesized by ion beams: Optical properties and photonic applications[J]. Adv Opt Mater, 2020, 8(9): 1902087.
[43] [43] WU Y, SHEN X, DAI S X, et al. Silver nanoparticles enhanced upconversion luminescence in Er3+/Yb3+ codoped bismuth-germanate glasses[J]. J Phys Chem C, 2011, 115(50): 25040–25045.
[44] [44] QI J N, XU T F, WU Y, et al. Ag nanoparticles enhanced near-IR emission from Er3+ ions doped glasses[J]. Opt Mater, 2013, 35(12):2502–2506.
[45] [45] KASSAB L R P, KUMADA D K, DA SILVA D M, et al. Enhanced infrared-to-visible frequency upconversion in Yb3+/Er3+ codoped Bi2O3–GeO2 glasses with embedded silver nanoparticles[J]. J Non Cryst Solids, 2018, 498: 395–400.
[46] [46] SHAN Y, HU G H, GRILLI M L, et al. Measuring ultrathin metal coatings using SPR spectroscopic ellipsometry with a prism-dielectricmetal-liquid configuration[J]. Opt Express, 2019, 27(6): 7912–7921.
[47] [47] GUO T, CHEN Z, LI M H, et al. Film thickness measurement based on nonlinear phase analysis using a Linnik microscopic white-light spectral interferometer[J]. Appl Opt, 2018, 57(12): 2955–2961.
[48] [48] XIE Z Y, TANG Y, ZHOU Y, et al. Surface and thickness measurement of transparent thin-film layers utilizing modulation-based structured-illumination microscopy[J]. Opt Express, 2018, 26(3):2944–2953.
[49] [49] SHAN Y, HU G H, GU L Y, et al. Measuring optical constants of ultrathin layers using surface-plasmon-resonance-based imaging ellipsometry[J]. Appl Opt, 2017, 56(28): 7898–7904.
[50] [50] LIU X F, QIU J R. Recent advances in energy transfer in bulk and nanoscale luminescent materials: From spectroscopy to applications[J].Chem Soc Rev, 2015, 44(23): 8714–8746.
[51] [51] YANG L, BECKER K, SMITH F M, et al. Size dependence of the third-order susceptibility of copper nanoclusters investigated by four-wave mixing[J]. J Opt Soc Am B, 1994, 11(3): 457–461.
[52] [52] SUN X L, JIA Y C, NIE H K, et al. Near-surface buried plasmonic nanoparticles in glass as novel nonlinear saturable absorbers for ultrafast lasers[J]. Adv Opt Mater, 2022, 10(1): 2101664.
[53] [53] ZONG C, XU M X, XU L J, et al. Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges[J]. Chem Rev,2018, 118(10): 4946–4980.
[54] [54] FARAJ R, GOUTALAND F, OLLIER N, et al. Growth of gold nanoparticles in a glass matrix by continuous laser irradiation for efficient surface enhanced Raman scattering[J]. Phys Status Solidi A, 2019, 216(3): 1800548.
Get Citation
Copy Citation Text
WAN Zixuan, XU Jian, XIAO Weiqiang, LIU Xiaofeng. Research Progress and Applications of Glass Functionalized with Plasmonic Nanocrystals[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2517
Category:
Received: Nov. 30, 2023
Accepted: --
Published Online: Dec. 4, 2024
The Author Email: Weiqiang XIAO (xiaowq@zjtobacco.com)