Optics and Precision Engineering, Volume. 23, Issue 5, 1434(2015)

Semi-supervised bundle manifold learning for hyperspectral image classification

LI Zhi-min1... ZHANG Jie1,*, HUANG Hong1 and JIANG Tao2 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(16)

    [3] [3] SONG X F, LI J CH. Classification hyperspectral remote sensing image based on sparse representation and spectral information [J]. Journal of Electronics & Information Technology, 2012, 34(2): 268-272. (in Chinese)

    [5] [5] ABDI H, WILLIAMS L J. Principal component analysis [J].Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4): 433-459.

    [6] [6] MOULIN C, LARGERON C, DUCOTTET C, et al.. Fisher linear discriminant analysis for text-image combination in multimedia information retrieval [J]. Pattern Recognition, 2014, 47(1): 260-269.

    [7] [7] WAN M, LAI Z, JIN Z. Feature extraction using two-dimensional local graph embedding based on maximum margin criterion [J]. Applied Mathematics and Computation, 2011, 217(23): 9659-9668.

    [8] [8] ROSMAN G, BRONSTEIN M M, BRONSTEIN A M, et al.. Nonlinear dimensionality reduction by topologically constrained isometric embedding[J]. International Journal of Computer Vision, 2010, 89(1): 56-68.

    [9] [9] ZHAO X, ZHANG S. Facial expression recognition using local binary patterns and discriminant kernel locally linear embedding [J]. EURASIP Journal on Advances in Signal Processing, 2012, 2012(1): 1-9.

    [10] [10] LUO W. Face recognition based on Laplacian Eigenmaps [C].Proceedings of the 2011 IEEE International Conference on Computer Science and Service System (CSSS), Nanjing, China, 2011: 416-419.

    [11] [11] HE X, CAI D, YAN S, et al.. Neighborhood preserving embedding [C].Proceedings of the 2005 IEEE International Conference on Computer Vision(ICCV), Beijing, china, 2005: 1208-1213.

    [12] [12] HE X, NIYOGI P. Locality preserving projections [C].Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 2004: 234-241.

    [13] [13] SONG Y Q, NIE F P, ZHANG C S, et al.. A unified framework for semi-supervised dimensionality reduction [J].Pattern Recognition, 2008, 41(9): 2789-2799.

    [14] [14] SONG Y Q, NIE F P, ZHANG C S. Semi-supervised sub-manifold discriminant analysis [J].Pattern Recognition Letters, 2008, 29(13): 1806-1813.

    [15] [15] BENGIO Y, MONPERRUS M. Non-local manifold tangent learning [J].Advances in Neural Information Processing Systems, 2005, 17: 129-136.

    [16] [16] LI CH G, GUO J, ZHANG H G. Learning Bundle Manifold by Double Neighborhood Graphs [M].Computer Vision-ACCV 2009, Springer Berlin Heidelberg, 2010: 321-330.

    CLP Journals

    [1] HUANG Hong, ZHENG Xin-lei. Hyperspectral image classification with combination of weighted spatial-spectral and KNN[J]. Optics and Precision Engineering, 2016, 24(4): 873

    [2] HUANG Hong, CHEN Mei-li, DUAN Yu-le, SHI Guang-yao. Hyper-spectral image classification using spatial-spectral manifold reconstruction[J]. Optics and Precision Engineering, 2018, 26(7): 1827

    [3] HUANG Hong, LI Zheng-ying, SHI Guang-yao, PAN Yin-song. Multi-features manifold discriminant embedding for hyperspectral image classification[J]. Optics and Precision Engineering, 2019, 27(3): 726

    [4] HUANG Hong, TANG Yu-xiao, DUAN Yu-le. Feature extraction of hyperspectral image with semi-supervised multi-graph embedding[J]. Optics and Precision Engineering, 2020, 28(2): 443

    Tools

    Get Citation

    Copy Citation Text

    LI Zhi-min, ZHANG Jie, HUANG Hong, JIANG Tao. Semi-supervised bundle manifold learning for hyperspectral image classification[J]. Optics and Precision Engineering, 2015, 23(5): 1434

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 4, 2014

    Accepted: --

    Published Online: Jun. 11, 2015

    The Author Email: Jie ZHANG (zhangjie_fly@126.com)

    DOI:10.3788/ope.20152305.1434

    Topics