Acta Optica Sinica, Volume. 43, Issue 24, 2430004(2023)

Remote Sensing on Carbon Dioxide Emissions in Power Plants and Urban Areas Based on DOAS Technology

Huarong Zhang1,2, Pinhua Xie1,2,3、*, Jin Xu1、**, Lü Yinsheng1,2, Youtao Li1, and Zhidong Zhang1,2
Author Affiliations
  • 1Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui , China
  • 2University of Science and Technology of China, Hefei 230026, Anhui , China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(28)

    [1] Ji H C, Xie P H, Xu J et al. Measuring method of atmospheric carbon dioxide based on tunable Fabry-Perot interferometer[J]. Acta Optica Sinica, 41, 1812004(2021).

    [2] IPCC [M]. Climate change 2022: mitigation of climate change(2022).

    [3] Lü Y X, Zhang T S, Fan G Q et al. Monitoring of pollution characteristics of atmospheric greenhouse gases using Fourier infrared system[J]. Chinese Journal of Lasers, 50, 0611001(2023).

    [4] Frey M, Sha M K, Hase F et al. Building the COllaborative Carbon Column Observing Network (COCCON): long-term stability and ensemble performance of the EM27/SUN Fourier transform spectrometer[J]. Atmospheric Measurement Techniques, 12, 1513-1530(2019).

    [5] Liu W Q, Wang X P, Ma G S et al. Research of high sensitivity cavity ring-down spectroscopy technology and its application[J]. Acta Optica Sinica, 41, 0130003(2021).

    [6] Dong H L, Liu C, Jin C M et al. Design and test of dual-channel non-dispersive infrared CO2 gas sensor[J]. Chinese Journal of Lasers, 50, 0210003(2023).

    [7] Liu W Q. Opportunities and challenges for development of atmospheric environmental optics monitoring technique under “double carbon” goal[J]. Acta Optica Sinica, 42, 0600001(2022).

    [8] Wang J, Wang G, Tan T et al. Mid-infrared laser heterodyne radiometer (LHR) based on a 3.53 μm room-temperature interband cascade laser[J]. Optics Express, 27, 9610-9619(2019).

    [9] Deng H, Yang C G, Wang W et al. Near infrared heterodyne radiometer for continuous measurements of atmospheric CO2 column concentration[J]. Infrared Physics & Technology, 101, 39-44(2019).

    [10] Deng H, Yang C G, Xu Z Y et al. Development of a laser heterodyne spectroradiometer for high-resolution measurements of CO2, CH4, H2O and O2 in the atmospheric column[J]. Optics Express, 29, 2003-2013(2021).

    [11] Burrows J P, Hölzle E, Goede A P H et al. SCIAMACHY—scanning imaging absorption spectrometer for atmospheric chartography[J]. Acta Astronautica, 35, 445-451(1995).

    [12] Buchwitz M, Rozanov V V, Burrows J P. A near-infrared optimized DOAS method for the fast global retrieval of atmospheric CH4, CO, CO2, H2O, and N2O total column amounts from SCIAMACHY Envisat-1 nadir radiances[J]. Journal of Geophysical Research: Atmospheres, 105, 15231-15245(2000).

    [13] Gerilowski K, Tretner A, Krings T et al. MAMAP–a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: instrument description and performance analysis[J]. Atmospheric Measurement Techniques, 4, 215-243(2011).

    [14] Krings T, Gerilowski K, Buchwitz M et al. Quantification of methane emission rates from coal mine ventilation shafts using airborne remote sensing data[J]. Atmospheric Measurement Techniques, 6, 151-166(2013).

    [15] Krautwurst S, Gerilowski K, Jonsson H H et al. Methane emissions from a Californian landfill, determined from airborne remote sensing and in situ measurements[J]. Atmospheric Measurement Techniques, 10, 3429-3452(2017).

    [16] Krautwurst S, Gerilowski K, Borchardt J et al. Quantification of CH4 coal mining emissions in Upper Silesia by passive airborne remote sensing observations with the Methane Airborne MAPper (MAMAP) instrument during the CO2 and Methane (CoMet) campaign[J]. Atmospheric Chemistry and Physics, 21, 17345-17371(2021).

    [17] Borchardt J, Gerilowski K, Krautwurst S et al. Detection and quantification of CH4 plumes using the WFM-DOAS retrieval on AVIRIS-NG hyperspectral data[J]. Atmospheric Measurement Techniques, 14, 1267-1291(2021).

    [18] Sun Y W, Liu W Q, Xie P H et al. Measurement of atmospheric water vapor using infrared differential optical absorption spectroscopy[J]. Acta Physica Sinica, 61, 140705(2012).

    [19] Sun Y W, Xie P H, Xu J et al. Measurement of atmospheric CO2 vertical column density using weighting function modified differential optical absorption spectroscopy[J]. Acta Physica Sinica, 62, 130703(2013).

    [20] Wang R W, Xie P H, Xu J et al. Retrieve of water vapor column density in atmosphere based on near infrared differential optical absorption spectroscopy[J]. Acta Optica Sinica, 39, 0201001(2019).

    [21] Wang R W. Research on inversion method and application of greenhouse gas column concentration based on WFM-DOAS[D](2019).

    [22] Platt U, Stutz J. Differential absorption spectroscopy[M]. Differential optical absorption spectroscopy. Physics of earth and space environments, 135-174(2008).

    [23] Keys R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29, 1153-1160(1981).

    [24] Xiang R, Yang H, Yan Z J et al. Super-resolution reconstruction of GOSAT CO2 products using bicubic interpolation[J]. Geocarto International, 37, 15187-15211(2022).

    [25] Gordon I E, Rothman L S, Hargreaves R J et al. The HITRAN2020 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 277, 107949(2022).

    [26] Huang Y Y, Li A, Wagner T et al. The quantification of NOx and SO2 point source emission flux errors of mobile differential optical absorption spectroscopy on the basis of the Gaussian dispersion model: a simulation study[J]. Atmospheric Measurement Techniques, 13, 6025-6051(2020).

    [27] Potere D. Horizontal positional accuracy of google earth’s high-resolution imagery archive[J]. Sensors, 8, 7973-7981(2008).

    [28] Huang Y Y, Li A, Qin M et al. Nitrogen oxides spatial distribution and emissions with mobile multi-axis differential optical absorption spectroscopy in Wuhan city[J]. Acta Optica Sinica, 41, 1030002(2021).

    Tools

    Get Citation

    Copy Citation Text

    Huarong Zhang, Pinhua Xie, Jin Xu, Lü Yinsheng, Youtao Li, Zhidong Zhang. Remote Sensing on Carbon Dioxide Emissions in Power Plants and Urban Areas Based on DOAS Technology[J]. Acta Optica Sinica, 2023, 43(24): 2430004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Mar. 31, 2023

    Accepted: May. 19, 2023

    Published Online: Dec. 8, 2023

    The Author Email: Xie Pinhua (phxie@aiofm.ac.cn), Xu Jin (jxu@aiofm.ac.cn)

    DOI:10.3788/AOS230762

    Topics