Acta Optica Sinica, Volume. 36, Issue 5, 514001(2016)

Influence of Electron Density Distribution Induced by Single Beam Femtosecond Laser on Doubly-Periodic Nanogratings

Gong Min1、*, Dai Ye1, Song Juan2, and Ma Guohong1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(28)

    [1] [1] Poumellec B, Lancry M, Chahid A, et al.. Modification thresholds in femtosecond laser processing of pure silica: Review of dependencies on laser parameters[J]. Opt Mater Express, 2011, 1(4): 766-782.

    [2] [2] Richter S, Heinrich M, Dring S, et al.. Nanogratings in fused silica: Formation, control, and applications[J]. J Laser Appl, 2012, 24(4): 042008.

    [3] [3] Bhardwaj V R, Simova E, Rajeev P P, et al.. Optically produced arrays of planar nanostructures inside fused silica[J]. Phys Rev Lett, 2006, 96(5): 057404.

    [4] [4] Taylor R S, Hnatovsky C, Simova E, et al.. Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass[J]. Opt Lett, 2007, 32(19): 2888-2890.

    [5] [5] Liao Y, Shen Y L, Qiao L L, et al.. Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes[J]. Opt Lett, 2013, 38(2): 187-189.

    [6] [6] Yu X M, Liao Y, He F, et al.. Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses[J]. J Appl Phys, 2011, 109(5): 053114.

    [7] [7] Shimotsuma Y, Sakakura M, Kazansky P G, et al.. Ultrafast manipulation of self-assembled form birefringence in glass[J]. Adv Mater, 2010, 22(36): 4039-4043.

    [8] [8] Liao Y, Cheng Y, Liu C N, et al.. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration[J]. Lab Chip, 2013, 13(8): 1626-1631.

    [9] [9] Ramirez L P R, Heinrich M, Richter S, et al.. Tuning the structural properties of femtosecond-laser-induced nanogratings[J]. Appl Phys A, 2010, 100(1): 1-6.

    [10] [10] Cheng G, Mishchik K, Mauclair C, et al.. Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass[J]. Opt Express, 2009, 17(12): 9515-9525.

    [11] [11] Beresna M, Geceviius M, Kazansky P G, et al.. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass[J]. Opt Mater Express, 2011, 1(4): 783-795.

    [12] [12] Beresna M, Geceviius M, Kazansky P G, et al.. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass[J]. Appl Phys Lett, 2011, 98(20): 201101.

    [14] [14] Li Dongjuan, Lin Ling, Lü Baida, et al.. Polarization-dependent optical guiding in low repetition frequency femtosecond laser photowritten type II fused silica waveguides[J]. Acta Optica Sinica, 2013, 33(5): 0532001.

    [15] [15] Xue Jun, Yang Yong, Li Chen, et al.. Research on polarized scattering of self-organized nanogratings induced by femtosecond laser[J]. Acta Optica Sinica, 2014, 34(4): 0432001.

    [16] [16] Shimotsuma Y, Kazansky P G, Qiu J R, et al.. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Phys Rev Lett, 2003, 91(24): 247405.

    [17] [17] Taylor R, Hnatovsky C, Simova E. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass[J]. Laser and Photon Rev, 2008, 2(1-2): 26-46.

    [18] [18] Richter S, Heinrich M, Dring S, et al.. Formation of femtosecond laser-induced nanogratings at high repetition rates[J]. Appl Phys A, 2011, 104(2): 503-507.

    [19] [19] Liao Y, Ni J L, Qiao L L, et al.. High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation[J]. Optica, 2015, 2(4): 329-334.

    [20] [20] Yang W, Bricchi E, Kazansky P G, et al.. Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing[J]. Opt Express, 2006, 14(21): 10117-10124.

    [21] [21] Kazansky P G, Bricchi E, Shimotsuma Y, et al.. Self-assembled nanostructures and two-plasmon decay in femtosecond processing of transparent materials[C]. Conference on Lasers and Electro-Optics, 2007: CThJ3.

    [22] [22] Messina F, Vella E, Cannas M, et al.. Evidence of delocalized excitons in amorphous solids[J]. Phys Rev Lett, 2010, 105(11): 116401.

    [23] [23] Beresna M, Geceviius M, Kazansky P G, et al.. Exciton mediated self-organization in glass driven by ultrashort light pulses[J]. Appl Phys Lett, 2012, 101(5): 053120.

    [24] [24] Yang P, Burns G R, Guo J, et al.. Femtosecond laser-pulse-induced birefringence in optically isotropic glass[J]. J Appl Phys, 2004, 95(10): 5280-5283.

    [25] [25] Bricchi E, Kazansky P G. Extraordinary stability of anisotropic femtosecond direct written structures embedded in silica glass[J]. Appl Phys Lett, 2006, 88(11): 111119.

    [26] [26] Hnatovsky C, Taylor R S, Rajeev P P, et al.. Pulse duration dependence of femtosecond laser fabricated nanogratings in fused silica[J]. Appl Phys Lett, 2005, 87(1): 014104.

    [27] [27] Buschlinger R, Nolte S, Peschel U. Self-organized pattern formation in laser-induced multiphoton ionization[J]. Phys Rev B, 2014, 89(18): 184306.

    [28] [28] Stuart B C, Feit M D, Herman S, et al.. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Phys Rev B, 1996, 53(4): 1749.

    CLP Journals

    [1] Jing Chenrui, Wang Zhaohui, Cheng Ya. Three-Dimensional Micro- and Nano-Machining Based on Spatiotemporal Focusing Technique of Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2017, 54(4): 40005

    Tools

    Get Citation

    Copy Citation Text

    Gong Min, Dai Ye, Song Juan, Ma Guohong. Influence of Electron Density Distribution Induced by Single Beam Femtosecond Laser on Doubly-Periodic Nanogratings[J]. Acta Optica Sinica, 2016, 36(5): 514001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Nov. 23, 2015

    Accepted: --

    Published Online: Apr. 26, 2016

    The Author Email: Min Gong (gongminfly@163.com)

    DOI:10.3788/aos201636.0514001

    Topics