Matter and Radiation at Extremes, Volume. 6, Issue 5, 054403(2021)

In situ observation of the Rayleigh–Taylor instability of liquid Fe and Fe–Si alloys under extreme conditions: Implications for planetary core formation

Hidenori Terasaki1...2,a), Tatsuhiro Sakaiya1, Keisuke Shigemori3, Kosaku Akimoto1, Hiroki Kato3, Yoichiro Hironaka3 and Tadashi Kondo1 |Show fewer author(s)
Author Affiliations
  • 1Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
  • 2Department of Earth Sciences, Graduate School of Science and Technology, Okayama University, Okayama 700-8530, Japan
  • 3Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
  • show less
    References(30)

    [1] S. A.Jacobson, D. C.Rubie, H.Terasaki, and H.Terasaki, R. A.Fischer. Mechanisms and geochemical models of core formation. Deep Earth: Physics and Chemistry of the Lower Mantle and Core, 181-190(2016).

    [2] C. B.Agee, M. C.Shannon. Percolation of core melts at lower mantle conditions. Science, 280, 1059(1998).

    [3] D. J.Frost, F.Langenhorst, D. C.Rubie, H.Terasaki. Interconnectivity of Fe–O–S liquid in polycrystalline silicate perovskite at lower mantle conditions. Phys. Earth Planet. Inter., 161, 170(2007).

    [4] Y.Bando, K.Hirose, M.Mitome, S.Ono, N.Takafuji, F.Xu. Segregation of core melts by permeable flow in the lower mantle. Earth Planet. Sci. Lett., 224, 249(2004).

    [5] J. C.Andrews, Y.Liu, W. L.Mao, Y.Meng, C. Y.Shi, J.Wang, W.Yang, L.Zhang. Formation of an interconnected network of iron melt at Earth’s lower mantle conditions. Nat. Geosci., 6, 971(2013).

    [7] H.Samuel, P. J.Tackley. Dynamics of core formation and equilibration by negative diapirism. Geochem., Geophys., Geosyst., 9, Q06011(2008).

    [8] D. H.Sharp. An overview of Rayleigh–Taylor instability. Physica D, 12, 3(1984).

    [9] S.Chandrasekhar. Hydrodynamic and Hydromagnetic Stability(1968).

    [10] S. W.Haan. Onset of nonlinear saturation for Rayleigh-Taylor growth in the presence of a full spectrum of modes. Phys. Rev. A, 39, 5812(1989).

    [11] D. J.Stevenson. Models of the Earth’s core. Science, 214, 611(1981).

    [14] P.Olson, D.Weeraratne. Experiments on metal–silicate plumes and core formation. Philos. Trans. R. Soc., A, 366, 4253(2008).

    [15] H.Azechi, M.Honda, K.Meguro, K.Mima, N.Miyanaga, M.Nakai, K.Shigemori, H.Takabe. Measurements of Rayleigh-Taylor growth rate of planar targets irradiated directly by partially coherent light. Phys. Rev. Lett., 78, 250(1997).

    [16] H.Azechi, N.Izumi, M.Matsuoka, M.Nakai, T.Sakaiya, K.Shigemori, H.Shiraga, A.Sunahara, H.Takabe, T.Yamanaka. Ablative Rayleigh-Taylor instability at short wavelengths observed with moiré interferometry. Phys. Rev. Lett., 88, 145003(2002).

    [17] D. T.Casey, D. S.Clark, M. J.Edwards, S. W.Haan, A.Hamza, D. E.Hoover, W. W.Hsing, O.Hurricane, J. D.Kilkenny, J.Kroll, O. L.Landen, A.Moore, A.Nikroo, L.Peterson, K.Raman, B. A.Remington, H. F.Robey, V. A.Smalyuk, S. V.Weber, K.Widmann. First measurements of hydrodynamic instability growth in indirectly driven implosions at ignition-relevant conditions on the National Ignition Facility. Phys. Rev. Lett., 112, 185003(2014).

    [18] Y.Zhou. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep., 720-722, 1(2017).

    [19] B.Albertazzi, J.Ballet, A.Casner, J. M.Di Nicola, P.Di Nicola, E.Falize, I.Igumenshchev, N.Izumi, D.Kalantar, S. F.Khan, M.Koenig, D.Lamb, E.Le Bel, S.Liberatore, C.Mailliet, D.Martinez, L.Masse, T.Michel, B. A.Remington, G.Rigon, Y.Sakawa, T.Sano, V. A.Smalyuk, V.Tikhonchuk, P.Tzeferacos. From ICF to laboratory astrophysics: Ablative and classical Rayleigh–Taylor instability experiments in turbulent-like regimes. Nucl. Fusion, 59, 032002(2019).

    [20] H.Azechi, S.Ido, Y.Izawa, J.Jitsuno, Y.Kato, K.MIma, N.Miyanaga, T.Mochizuki, S.Nakai, M.Nakatsuka, K.Nishihara, H.Nishimura, T.Norimatsu, S.Sakabe, T.Sasaki, H.Takabe, M.Takagi, T.Yabe, C.Yamanaka, M.Yamanaka, T.Yamanaka, K.Yoshida. High thermonuclear neutron yield by shock multiplexing implosion with GEKKO XII green laser. Nucl. Fusion, 27, 19(1987).

    [21] K.Akimoto, T.Fujikawa, Y.Hironaka, R.Hosogi, H.Kato, T.Kondo, T.Sakaiya, K.Shigemori, H.Terasaki, T.Ueda. Measurements of Rayleigh–Taylor instability growth of laser-shocked iron–silicon alloy. High Pressure Res., 39, 150(2019).

    [22] H.Azechi, Y.Izawa, T.Jitsuno, Y.Kato, K.Mima, N.Miyanaga, M.Nakai, S.Nakai, M.Nakatsuka, K.Nishihara, H.Nishimura, T.Norimatsu, T.Sasaki, H.Takabe, M.Takagi, T.Yabe, C.Yamanaka, M.Yamanaka, T.Yamanaka, K.Yoshida. Scalings of implosion experiments for high neutron yield. Phys. Fluids, 31, 2884(1988).

    [23] B. A.Remington, R. E.Rudd, J. S.Wark. From microjoules to megajoules and kilobars to gigabars: Probing matter at extreme states of deformation. Phys. Plasmas, 22, 090501(2015).

    [24] H.Azechi, T.Endo, M.Honda, R.Ishizaki, K.Mima, N.Miyanaga, M.Nakai, A.Nishiguchi, K.Nishihara, H.Nishimura, K.Shigemori, H.Shiraga, H.Takabe, J. G.Wouchuk. Direct-drive hydrodynamic instability experiments on the GEKKO XII laser. Phys. Plasmas, 4, 4079(1997).

    [25] T.Sakaiya. Experimental investigation of ablative Rayleigh-Taylor instability(2005).

    [26] J. C.Davis, E. M.Gullikson, B. L.Henke. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92. At. Data Nucl. Data Tables, 54, 181(1993).

    [27] T. R.Boehly, D. K.Bradley, J. P.Knauer, D. D.Meyerhofer, V. A.Smalyuk. Characterization of an x-ray radiographic system used for laser-driven planar target experiments. Rev. Sci. Instrum., 70, 647(1999).

    [28] G.Dimonte, C.Fryer, J.Jayaraj, P.-H.Lin, K.Muthuraman, P.Ramaprabhu, G.Rockefeller, P.Woodward. The late-time dynamics of the single-mode Rayleigh-Taylor instability. Phys. Fluids, 24, 074107(2012).

    [29] R.Betti, V. N.Goncharov, R. L.McCrory, C. P.Verdon. Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion. Phys. Plasmas, 5, 1446(1998).

    [30] T.Kleine, K.Mezger, C.Münker, H.Palme. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature, 418, 952(2002).

    Tools

    Get Citation

    Copy Citation Text

    Hidenori Terasaki, Tatsuhiro Sakaiya, Keisuke Shigemori, Kosaku Akimoto, Hiroki Kato, Yoichiro Hironaka, Tadashi Kondo. In situ observation of the Rayleigh–Taylor instability of liquid Fe and Fe–Si alloys under extreme conditions: Implications for planetary core formation[J]. Matter and Radiation at Extremes, 2021, 6(5): 054403

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fundamental Physics At Extreme Light

    Received: Sep. 13, 2020

    Accepted: Aug. 2, 2021

    Published Online: Oct. 19, 2021

    The Author Email: Terasaki Hidenori (tera@okayama-u.ac.jp)

    DOI:10.1063/5.0029448

    Topics