Acta Photonica Sinica, Volume. 50, Issue 7, 79(2021)

Remote Sensing Image Scene Classification Based on Supervised Contrastive Learning

Dongen GUO1...2, Ying XIA1, Xiaobo LUO1 and Jiangfan FENG1 |Show fewer author(s)
Author Affiliations
  • 1Chongqing Engineering Research Center for Spatial Big Data Intelligent Technology, Chongqing University of Posts and Telecommunications, Chongqing400065, China
  • 2School of Computer and Software, Nanyang Institute of Technology, Nanyang,Henan473000, China
  • show less
    Figures & Tables(13)
    The structure of the proposed model
    The size of the feature maps on each key node in the model
    The structure of gated self-attention module
    Some examples from AID data set
    Some examples from NWPU-RESISC45 data set
    Histogram of classification results on AID dataset with training ratio of 20% and 50%
    Confusion matrix generated under 20% training ratio on the AID dataset
    Confusion matrix generated under 50% training ratio on the AID dataset
    Confusion matrix generated under 20% training ratio on the NWPU-RESISC45 dataset
    • Table 1. Data set description

      View table
      View in Article

      Table 1. Data set description

      DatasetImages per categoryNumber of categoriesTotal imagesSizeTraining ratio
      AID220~4203010 000600×60020%/50%
      NWPU-RESISC457004531 500256×25610%/20%
    • Table 2. Performance comparisons of different methods on AID and NWPU-RESISC45 datasets

      View table
      View in Article

      Table 2. Performance comparisons of different methods on AID and NWPU-RESISC45 datasets

      MethodsYearAID datasetNWPU-RESISC45 dataset
      20% training ratio50% training ratio10% training ratio10% training ratio
      D-CNN2201890.82±0.1696.89±0.1088.07±0.1888.07±0.18
      MSCP18201892.21±0.1796.56±0.1889.03±0.2189.03±0.21
      SF-CNN23201993.60±0.1296.66±0.1190.87±0.1590.87±0.15
      CNN-CapsNet24201993.79±0.1396.63±0.1291.48±0.1991.48±0.19
      MF2Net25201993.82±0.2695.93±0.2391.63±0.1591.63±0.15
      MG-CAP(Bil)26202092.11±0.1595.14±0.1288.48±0.2188.48±0.21
      DDRL-AM27202092.36±0.1096.25±0.0589.22±0.5089.22±0.50
      SCCov28202093.12±0.2596.10±0.1689.42±0.1989.42±0.19
      MG-CAP(Sqr)26202093.34±0.1896.12±0.1289.89±0.1689.89±0.16
      ResNet50EAM29202093.64±0.2596.62±0.1391.08±0.2491.08±0.24
      ResNet101EAM29202094.26±0.1197.06±0.1991.91±0.2291.91±0.22
      Ours--95.66±0.1997.29±0.2292.86±0.2092.86±0.20
    • Table 3. Performance comparisons of different variants on two datasets

      View table
      View in Article

      Table 3. Performance comparisons of different variants on two datasets

      MethodsAID datasetNWPU-RESISC45 dataset
      20% training ratio50% training ratio10% training ratio20% training ratio
      SCRSISC-SC94.52±0.1396.26±0.1191.83±0.1193.78±0.12
      SCRSISC-GSA94.36±0.1796.14±0.1891.38±0.2493.51±0.19
      SCRSISC-Inc_v394.16±0.1596.05±0.2591.16±0.1093.28±0.13
      Ours(SCRSISC)95.66±0.1997.29±0.2292.86±0.2094.73±0.19
    • Table 4. Comparisons of efficiency and accuracy for two datasets at 20% training ratio

      View table
      View in Article

      Table 4. Comparisons of efficiency and accuracy for two datasets at 20% training ratio

      MethodsAID datasetNWPU-RESISC45 dataset
      Times/minAccuracyTimes/minAccuracy
      ResNet50EAM296193.64±0.2516893.49±0.17
      ResNet101EAM2910994.26±0.1128294.29±0.09
      Ours (SCRSISC)4595.66±0.1912694.73±0.19
    Tools

    Get Citation

    Copy Citation Text

    Dongen GUO, Ying XIA, Xiaobo LUO, Jiangfan FENG. Remote Sensing Image Scene Classification Based on Supervised Contrastive Learning[J]. Acta Photonica Sinica, 2021, 50(7): 79

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Dec. 12, 2020

    Accepted: Mar. 4, 2021

    Published Online: Sep. 1, 2021

    The Author Email:

    DOI:10.3788/gzxb20215007.0710002

    Topics