Journal of Terahertz Science and Electronic Information Technology , Volume. 22, Issue 11, 1209(2024)
Link-level transmission rate simulation technology for 55GG--RR
[3] [3] DUAN Wei, GU Jinyuan, WEN Miaowen, et al. Emerging technologies for 5G-IoV networks: applications, trends and opportunities[J]. IEEE Network, 2020, 34(5): 283-289. doi: 10.1109/MNET.001.1900659.
[4] [4] HE Danping, AI Bo, GUAN Ke, et al. The design and applications of a high-performance ray-tracing simulation platform for 5G and beyond wireless communications: a tutorial[J]. IEEE Communications Surveys & Tutorials, 2019, 21(1): 10-27. doi: 10.1109/COMST.2018.2865724.
[5] [5] HE Danping, GUAN Ke, YAN Dong, et al. Physics and AI-based digital twin of multi-spectrum propagation characteristics for communication and sensing in 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(11): 3461-3473. doi: 10.1109/JSAC.2023.3310108.
[6] [6] ZHOU T, TAO C, SALOUS S, et al. LTE-based channel measurements for high-speed railway scenarios[C]//2015 IEEE Global Communications Conference (GLOBECOM). San Diego, CA, USA: IEEE, 2015: 1-6. doi: 10.1109/GLOCOM.2015.7417096.
[7] [7] YANG J, AI B, SALOUS S, et al. An efficient MIMO channel model for LTE-R network in high-speed train environment[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3189-3200. doi: 10.1109/TVT.2019.2894186.
[8] [8] TANG Pei. Channel characteristics for 5G in urban rail station at 3.5 GHz based on ray-tracing[C]//2021 the 7th International Conference on Computer and Communications. Chengdu, China: IEEE, 2021: 2264-2268. doi: 10.1109/ICCC54389.2021.9674363.
[9] [9] LIANG Yiqun, LI Hui, LI Yi, et al. Mainline railway modeled with 2 100 MHz 5G-R channel based on measured data of test line of loop railway[J]. Symmetry, 2024, 16(4): 431. doi: 10.3390/sym16040431.
[12] [12] DING Jianwen, LIU Yao, LIAO Hongjian, et al. Statistical model of path loss for railway 5G marshalling yard scenario[J]. ZTE Communications, 2023, 21(3): 117-122. doi: 10.12142/ZTECOM.202303015.
[14] [14] RAPPAPORT T S. Wireless communications: principles and practice[M]. Cambridge: Cambridge University Press, 2024.
[15] [15] HATA M. Empirical formula for propagation loss in land mobile radio services[J]. IEEE Transactions on Vehicular Technology, 1980(29): 317-325. doi: 10.1109/T-VT.1980.23859.
[17] [17] IEEE. 802.16-2004-IEEE standard for local and metropolitan area networks-part 16: air interface for fixed broadband wireless access systems: Std 802.16-2022[S]. Piscataway, NJ: IEEE Press, 2022.
[18] [18] 3GPP TR 38.901. Study on channel model for frequencies from 0.5 to 100 GHz[R]. 2017.
[19] [19] Teltonika Networks. Mobile signal strength recommendations[EB/OL]. [2024-08-31]. https://wiki.teltonika-networks.com/view/Mobile_Signal_Strength_Recommendations.
Get Citation
Copy Citation Text
SHI Zheng, WANG Xiaoyan, DUO Hao, GUO Ziye, ZHANG Yu, SUN Bin, WANG Wei, GUO Lantu. Link-level transmission rate simulation technology for 55GG--RR[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(11): 1209
Category:
Received: Aug. 31, 2024
Accepted: Jan. 3, 2025
Published Online: Jan. 3, 2025
The Author Email: Hao DUO (duohao@caict.ac.cn)