Frontiers of Optoelectronics, Volume. 15, Issue 4, 12200(2022)

A sensitization strategy for highly efficient blue fluorescent organic light-emitting diodes

Yalei Duan, Runda Guo, Yaxiong Wang, Kaiyuan Di, and Lei Wang*
Author Affiliations
  • Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    References(48)

    [1] [1] Pu, Y.J., Satake, R., Koyama, Y., Otomo, T., Hayashi, R., Haruta, N., Katagiri, H., Otsuki, D., Kim, D.G., Sato, T.: Absence of delayed fluorescence and triplet-triplet annihilation in organic light emitting diodes with spatially orthogonal bianthracenes. J. Mater. Chem. C Mater. Opt. Electron. Devices 7(9), 2541–2547 (2019)

    [2] [2] Cai, M., Auffray, M., Zhang, D., Zhang, Y., Nagata, R., Lin, Z., Tang, X., Chan, C.Y., Lee, Y.T., Huang, T., Song, X., Tsuchiya, Y., Adachi, C., Duan, L.: Enhancing spin-orbital coupling in deepblue/blue TADF emitters by minimizing the distance from the heteroatoms in donors to acceptors. Chem. Eng. J. 420, 127591 (2021)

    [3] [3] Zhao, C., Duan, L.: Review on photo-and electrical aging mechanisms for neutral excitons and ions in organic light-emitting diodes. J. Mater. Chem. C Mater. Opt. Electron. Devices 8(3), 803–820 (2020)

    [4] [4] Song, X., Zhang, D., Zhang, Y., Lu, Y., Duan, L.: Strategically modulating carriers and excitons for efficient and stable ultrapuregreen fluorescent OLEDs with a sterically hindered bodipy dopant. Adv. Opt. Mater. (2020)

    [5] [5] Li, M., Wang, Y.F., Zhang, D., Duan, L., Chen, C.F.: Axially chiral TADF-active enantiomers designed for efficient blue circularly polarized electroluminescence. Angew. Chem. Int. Ed. Engl.59(9), 3500–3504 (2020)

    [6] [6] Yu, L., Wu, Z., Xie, G., Zeng, W., Ma, D., Yang, C.: Molecular design to regulate the photophysical properties of multifunctional TADF emitters towards high-performance TADF-based OLEDs with EQEs up to 22.4% and small efficiency roll-offs. Chem. Sci. (Camb.) 9(5), 1385–1391 (2018)

    [7] [7] Gong, X., Li, P., Huang, Y.H., Wang, C.Y., Lu, C.H., Lee, W.K., Zhong, C., Chen, Z., Ning, W., Wu, C.C., Gong, S., Yang, C.: A red thermally activated delayed fluorescence emitter simultaneously having high photoluminescence quantum efficiency and preferentially horizontal emitting dipole orientation. Adv. Funct. Mater. (2020)

    [8] [8] Wang, Y.K., Huang, C.C., Ye, H., Zhong, C., Khan, A., Yang, S.Y., Fung, M.K., Jiang, Z.Q., Adachi, C., Liao, L.S.: Through space charge transfer for efficient sky-blue thermally activated delayed fluorescence (TADF) emitter with unconjugated connection. Adv. Opt. Mater. (2020)

    [9] [9] Yang, C.Y., Kang, S., Jeong, H., Jang, H.J., Lee, Y., Lee, J.Y.: Key host parameters for long lifetimes in phosphorescent organic lightemitting diodes: Bond dissociation energy in triplet excited state. J. Mater. Chem. C Mater. Opt. Electron. Devices 8(5), 1697–1703 (2020)

    [10] [10] Byeon, S.Y., Lee, D.R., Yook, K.S., Lee, J.Y.: Recent progress of singlet-exciton-harvesting fluorescent organic light-emitting diodes by energy transfer processes. Adv. Mater. (2019)

    [11] [11] Kothavale, S., Lee, K.H., Lee, J.Y.: Isomeric quinoxalinedicarbonitrile as color-managing acceptors of thermally activated delayed fluorescent emitters. ACS Appl. Mater. Interfaces 11(19), 17583–17591 (2019)

    [12] [12] Jeon, S.K., Lee, H.L., Yook, K.S., Lee, J.Y.: Recent progress of the lifetime of organic light-emitting diodes based on thermally activated delayed fluorescent material. Adv. Mater. (2019)

    [13] [13] Guo, R., Zhang, W., Zhang, Q., Lv, X., Wang, L.: Efficient deep red phosphorescent oleds using 1,2,4-thiadiazole core-based novel bipolar host with low efficiency roll-off. Front Optoelectron. 11(4), 375–384 (2018)

    [14] [14] Baldo, M.A., O’brien, D.F., Thompson, M.E., Forrest, S.R.: Excitonic singlet-triplet ratio in a semiconducting organic thin film. Phys. Rev. B Condens. Matter (1999)

    [15] [15] Liu, Y., Li, C., Ren, Z., Yan, S., Bryce, M.R.: All-organic thermally activated delayed fluorescence materials for organic lightemitting diodes. Nat. Rev. Mater. 3(4), 18020–18039 (2018)

    [16] [16] Cai, X., Su, S.J.: Marching toward highly efficient, pure-blue, and stable thermally activated delayed fluorescent organic lightemitting diodes. Adv. Funct. Mater. (2018)

    [17] [17] Wu, Y., Zhu, Y., Zhang, Z., Zhao, C., He, J., Yan, C., Meng, H.: Narrowband deep-blue multi-resonance induced thermally activated delayed fluorescence: Insights from the theoretical molecular design. Molecules (2022)

    [18] [18] Yang, Z., Mao, Z., Xie, Z., Zhang, Y., Liu, S., Zhao, J., Xu, J., Chi, Z., Aldred, M.: Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 46(3), 915–1016 (2017)

    [19] [19] Wong, M.Y., Zysman-Colman, E.: Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv. Mater. 29(22), 1605444–1605497 (2017)

    [20] [20] Konidena, R.K., Lee, K.H., Lee, J.Y.: Two-channel emission controlled by a conjugation valve for the color switching of thermally activated delayed fluorescence emission. J. Mater. Chem. C Mater. Opt. Electron. Devices 7(32), 9908–9916 (2019)

    [21] [21] Im, Y., Han, S.H., Lee, J.Y.: Deep blue thermally activated delayed fluorescent emitters using CN-modified indolocarbazole as an acceptor and carbazole-derived donors. J. Mater. Chem. C Mater. Opt. Electron. Devices 6(18), 5012–5017 (2018)

    [22] [22] Zhang, D., Cai, M., Zhang, Y., Zhang, D., Duan, L.: Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability. Mater. Horiz. 3(2), 145–151 (2016)

    [23] [23] Cai, M., Zhang, D., Xu, J., Hong, X., Zhao, C., Song, X., Qiu, Y., Kaji, H., Duan, L.: Unveiling the role of langevin and trap-assisted recombination in long lifespan OLEDs employing thermally activated delayed fluorophores. ACS Appl. Mater. Interfaces 11(1), 1096–1108 (2019)

    [24] [24] Song, X., Zhang, D., Lu, Y., Yin, C., Duan, L.: Understanding and manipulating the interplay of wide-energy-gap host and TADF sensitizer in high-performance fluorescence OLEDs. Adv. Mater. (2019)

    [25] [25] Gan, L., Xu, Z., Wang, Z., Li, B., Li, W., Cai, X., Liu, K., Liang, Q., Su, S.J.: Utilizing a spiro TADF moiety as a functional electron donor in TADF molecular design toward efficient “multichannel” reverse intersystem crossing. Adv. Funct. Mater. (2019)

    [26] [26] Wang, Y., Di, K., Duan, Y., Guo, R., Lian, L., Zhang, W., Wang, L.: The selective regulation of borylation site based on one-shot electrophilic C-H borylation reaction, achieving highly efficient narrowband organic light-emitting diodes. Chem. Eng. J. 431, 133221 (2022)

    [27] [27] Zhang, D., Duan, L., Li, C., Li, Y., Li, H., Zhang, D., Qiu, Y.: Highefficiency fluorescent organic light-emitting devices using sensitizing hosts with a small singlet-triplet exchange energy. Adv. Mater. 26(29), 5050–5055 (2014)

    [28] [28] Abroshan, H., Zhang, Y., Zhang, X., Fuentes-Hernandez, C., Barlow, S., Coropceanu, V., Marder, S.R., Kippelen, B., Brédas, J.L.: Thermally activated delayed fluorescence sensitization for highly efficient blue fluorescent emitters. Adv. Funct. Mater. (2020)

    [29] [29] Zhang, D., Duan, L.: TADF sensitization targets deep-blue. Nat. Photonics 15(3), 169–173 (2021)

    [30] [30] Zou, S.N., Chen, X., Yang, S.Y., Kumar, S., Qu, Y.K., Yu, Y.J., Fung, M.K., Jiang, Z.Q., Liao, L.S.: Efficient violet organic lightemitting diodes with CIEy of 0.02 based on spiro skeleton. Adv. Opt. Mater. (2020)

    [31] [31] Geng, T.M., Zhang, C., Hu, C., Liu, M., Fei, Y.T., Xia, H.Y.: Synthesis of 1,6-disubstituted pyrene-based conjugated microporous polymers for reversible adsorption and fluorescence sensing of iodine. New J. Chem. 44(6), 2312–2320 (2020)

    [32] [32] Yang, T., Liang, B., Cheng, Z., Li, C., Lu, G., Wang, Y.: Construction of efficient deep-red/near-infrared emitter based on a large π-conjugated acceptor and delayed fluorescence OLEDs with external quantum efficiency of over 20%. J. Phys. Chem. C 123(30), 18585–18592 (2019)

    [33] [33] Yin, X., Peng, Y., Luo, J., Zhou, X., Gao, C., Wang, L., Yang, C.: Tailoring the framework of organic small molecule semiconductors towards high-performance thermoelectric composites via conglutinated carbon nanotube webs. J. Mater. Chem. A Mater. Energy Sustain. 6(18), 8323–8330 (2018)

    [34] [34] Ahn, D.H., Jeong, J.H., Song, J., Lee, J.Y., Kwon, J.H.: Highly efficient deep blue fluorescent organic light-emitting diodes boosted by thermally activated delayed fluorescence sensitization. ACS Appl. Mater. Interfaces 10(12), 10246–10253 (2018)

    [35] [35] Wang, Z., Zheng, C., Fu, W., Xu, C., Wu, J., Ji, B.: Efficient nondoped deep-blue electroluminescence devices based on unsymmetrical and highly twisted pyrene derivatives. New J. Chem. 41(23), 14152–14160 (2017)

    [36] [36] Feng, X., Hu, J.Y., Yi, L., Seto, N., Tao, Z., Redshaw, C., Elsegood, M.R., Yamato, T.: Pyrene-based Y-shaped solid-state blue emitters: synthesis, characterization, and photoluminescence. Chem. Asian J. 7(12), 2854–2863 (2012)

    [37] [37] Figueira-Duarte, T.M., Müllen, K.: Pyrene-based materials for organic electronics. Chem. Rev. 111(11), 7260–7314 (2011)

    [38] [38] Wee, K.R., Ahn, H.C., Son, H.J., Han, W.S., Kim, J.E., Cho, D.W., Kang, S.O.: Emission color tuning and deep blue dopant materials based on 1,6-bis(N-phenyl-p-(R)-phenylamino)pyrene. J. Org. Chem. 74(21), 8472–8475 (2009)

    [39] [39] Lee, S.B., Park, K.H., Joo, C.W., Lee, J.I., Lee, J., Kim, Y.H.: Highly twisted pyrene derivatives for non-doped blue oleds. Dyes Pigments 128, 19–25 (2016)

    [40] [40] Zhang, Q., Xiang, S., Huang, Z., Sun, S., Ye, S., Lv, X., Liu, W., Guo, R., Wang, L.: Molecular engineering of pyrimidine-containing thermally activated delayed fluorescence emitters for highly efficient deep-blue (CIE y<0.06) organic light-emitting diodes. Dyes Pigments 155, 51–58 (2018)

    [41] [41] Lv, X., Huang, R., Sun, S., Zhang, Q., Xiang, S., Ye, S., Leng, P., Dias, F.B., Wang, L.: Blue TADF emitters based on indenocarbazole derivatives with high photoluminescence and electroluminescence efficiencies. ACS Appl. Mater. Interfaces 11(11), 10758–10767 (2019)

    [42] [42] Lv, X., Zhang, W., Ding, D., Han, C., Huang, Z., Xiang, S., Zhang, Q., Xu, H., Wang, L.: Integrating the emitter and host characteristics of donor-acceptor systems through edge-spiro effect toward 100% exciton harvesting in blue and white fluorescence diodes. Adv. Opt. Mater. 6(12), 1800165–1800176 (2018)

    [43] [43] Zhang, Q., Sun, S., Chung, W.J., Yoon, S.J., Wang, Y., Guo, R., Ye, S., Lee, J.Y., Wang, L.: Highly efficient TADF OLEDs with low efficiency roll-off based on novel acridine-carbazole hybrid donor-substituted pyrimidine derivatives. J. Mater. Chem. C Mater. Opt. Electron. Devices 7(39), 12248–12255 (2019)

    [44] [44] Ahn, D.H., Lee, H., Kim, S.W., Karthik, D., Lee, J., Jeong, H., Lee, J.Y., Kwon, J.H.: Highly twisted donor-acceptor boron emitter and high triplet host material for highly efficient blue thermally activated delayed fluorescent device. ACS Appl. Mater. Interfaces 11(16), 14909–14916 (2019)

    [45] [45] Zhang, Q., Wang, Y., Yoon, S.J., Chung, W.J., Ye, S., Guo, R., Leng, P., Sun, S., Lee, J.Y., Wang, L.: Fusing acridine and benzofuran/benzothiophene as a novel hybrid donor for high-performance and low efficiency roll-off TADF oleds. J. Mater. Chem. C Mater. Opt. Electron. Devices 8(5), 1864–1870 (2020)

    [46] [46] Lv, X., Sun, S., Zhang, Q., Ye, S., Liu, W., Wang, Y., Guo, R., Wang, L.: A strategy to construct multifunctional TADF materials for deep blue and high efficiency yellow fluorescent devices. J. Mater. Chem. C Mater. Opt. Electron. Devices 8(14), 4818–4826 (2020)

    [47] [47] Oh, H.Y., Lee, C., Lee, S.: Efficient blue organic light-emitting diodes using newly-developed pyrene-based electron transport materials. Org. Electron. 10(1), 163–169 (2009)

    [48] [48] Zhang, Q., Tsang, D., Kuwabara, H., Hatae, Y., Li, B., Takahashi, T., Lee, S.Y., Yasuda, T., Adachi, C.: Nearly 100% internal quantum efficiency in undoped electroluminescent devices employing pure organic emitters. Adv. Mater. 27(12), 2096–2100 (2015)

    Tools

    Get Citation

    Copy Citation Text

    Yalei Duan, Runda Guo, Yaxiong Wang, Kaiyuan Di, Lei Wang. A sensitization strategy for highly efficient blue fluorescent organic light-emitting diodes[J]. Frontiers of Optoelectronics, 2022, 15(4): 12200

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH ARTICLE

    Received: Mar. 7, 2022

    Accepted: Apr. 12, 2022

    Published Online: Jan. 22, 2023

    The Author Email: Wang Lei (wanglei@mail.hust.edu.cn)

    DOI:10.1007/s12200-022-00046-z

    Topics