Journal of Synthetic Crystals, Volume. 49, Issue 8, 1457(2020)

Structure-Performance Relationship in the Diamond-Like Infrared Nonlinear Optical Materials with I2-II-IV-VI4 Type

YANG Ya and WU Kui*
Author Affiliations
  • [in Chinese]
  • show less
    References(34)

    [1] [1] Liang F, Kang L, Lin Z S, et al. Analysis and prediction of mid-IR nonlinear optical metal sulfides with diamond-like structures[J].Coordination Chemical Reviews,2017,333: 57-70.

    [2] [2] Xia Z G, Poeppelmeier K R. Chemistry-inspired adaptable framework structures[J].Accounts of Chemical Research,2017,50(5): 1222-1230.

    [3] [3] In C, Mercouri G K. Metal chalcogenides: a rich source of nonlinear optical materials[J].Chemistry of Materials,2014,26(1): 849-869.

    [4] [4] Pan Y, Guo S P, Liu B W, et al. Second-order nonlinear optical crystals with mixed anions[J].Coordination Chemistry Reviews,2018,374: 464-496.

    [5] [5] Hu C L, Mao J G. Recent advances on second-order NLO materials based on metal iodates[J].Coordination Chemistry Reviews,2015,288: 1-17.

    [6] [6] Zhao S G, Gong P F, Bai L, et al. Beryllium-free Li4Sr(BO3)2 for deep-ultraviolet nonlinear optical applications[J].Nature Communications,2014,5: 4019(1-7).

    [7] [7] Wang X F, Wang Y, Zhang B B, et al. CsB4O6F: a congruent-melting deep-ultraviolet nonlinear optical material by combining superior functional units[J].Angewandte Chemie International Edition,2017,56(45): 14119-14123.

    [8] [8] Luo M, Liang F, Song Y X, et al. M2B10O14F6 (M=Ca, Sr): Two noncentrosymmetric alkaline earth fluorooxoborates as promising next-generation deep-ultraviolet nonlinear optical materials[J].Journal of the American Chemical Society,2018,140(11): 3884-3887.

    [9] [9] Chen C W, Hsu Y K, Huang J Y, et al. Generation properties of coherent infraredradiation in the optical absorption region of GaSe crystal[J].Optics Express,2006,14(22): 10636-10644.

    [10] [10] Myers L E, Eckardt R C, Fejer M M, et al. Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3[J].Journal of the Optical Society of America B,1995,12(11): 2102-2116.

    [11] [11] Zawilski K T, Schunemann P G, Setzler S D, et al. Large aperture single crystal ZnGeP2 for high-energy applications[J].Journal of Crystal Growth,2008,310(7-9): 1891-1896.

    [12] [12] Apollonov V V, Lebedev S P, Komandin G A, et al. High power CO2-laser radiation conversion with AgGaSe2 and AgGa1-xInxSe2 crystals[J].Laser Physics,1999,9(6): 1236-1239.

    [13] [13] Badikov V V, Blinov P S, Kosterev A A, et al. Efficient parametric generators of picosecond midinfrared pulses based on AgGaS2 crystals[J].Quantum Electronics,1997,27(6): 523-528.

    [14] [14] Luo X Y, Li Z, Guo Y W, et al. Recent progress on new infrared nonlinear optical materials with application prospect[J].Journal of Solid State Chemistry,2019,270: 674-687.

    [15] [15] Kolker D B, Kostyukova N Y, Boyko A A, et al. Widely tunable (2.6-10.4 μm) BaGa4Se7 optical parametric oscillator pumped by a Q-switched Nd: YLiF4 laser [J].Journal of Physics Communications,2018,2: 035-048.

    [16] [16] Wu K, Yang Z H, Pan S L. A first quaternary diamond-like semiconductor with 10-membered LiS4 rings exhibiting excellent nonlinear optical performances[J].Chemical Communications,2017,53(21): 3010-3013.

    [17] [17] Jonathan W L,Meghann A M,Katie L M,et al. Second-harmonic generation and crystal structure of the diamond-like semiconductors Li2CdGeS4 and Li2CdSnS4[J].Iorganic Chemistry,2009,48(16): 7516-7518.

    [18] [18] Zhang J H, Clark D J, Weiland A, et al. Li2CdGeSe4 and Li2CdSnSe4: biaxial nonlinear optical materials with strong infrared secondorder responses and laser-induced damage thresholds influenced by photoluminescence[J].Inorganic Chemistry Frontiers,2017,4(9): 1472-1484.

    [19] [19] Zhang J H, Clark D J, Brant J A, et al. Infrared nonlinear optical properties of lithium-containing diamond-like semiconductors Li2ZnGeSe4 and Li2ZnSnSe4[J].Dalton Transactions,2015,44(24): 11212-11222.

    [20] [20] Ritscher A, Hoelzel M, Lerch M. The order-disorder transition in Cu2ZnSnS4-a neutron scattering investigation[J].Journal of Solid State Chemistry,2016,238: 68-73.

    [21] [21] Heinrich C P, Day T W, Zeier W G, et al. Effect of isovalent substitution on the thermoelectric properties of the Cu2ZnGeSe4-xSx series of solid solutions[J].Journal of the American Chemical Society,2014,136(1): 442-448.

    [22] [22] Parasyuk O V, Olekseyuk I D, Piskach L V, et al. Phase relations in the Ag2S-CdS-SnS2 system and the crystal structure of the compounds[J].Journal of Alloys and Compounds,2005,399(1-2): 173-177.

    [23] [23] Gulay L D, Nazarchuk O P, Olekseyuk I D. Crystal structures of the compounds Cu2CoSi(Ge,Sn)S4 and Cu2CoGe(Sn)Se4[J].Journal of Alloys and Compounds,2004,377(1-2): 306-311.

    [24] [24] Liang F, Kang L, Lin Z S, et al. Analysis and prediction of mid-IR nonlinear optical metal sulfides with diamond-like structures[J].Coordination Chemistry Reviews,2017,333: 57-70.

    [25] [25] Brant J A, Clark D J, Kim Y S, et al. Li2CdGeS4, a diamond-like semiconductor with strong second-order optical nonlinearity in the infrared and exceptional laser damage threshold[J].Chemistry of Materials,2014,26(10): 3045-3048.

    [26] [26] Wu K, Pan S L. Li2HgMS4 (M=Si,Ge,Sn): new quaternary diamond-like semiconductors for infrared laser frequency conversion[J].Crystals,2017,7(4): 107-119.

    [27] [27] Li X S, Li C, Zhou M L, et al. Li2MnSnSe4: a new quaternary diamond-like semiconductor with nonlinear optical response and antiferromagnetic property[J].Chemistry-An Asian Journal,2017,12(24): 3172-3177.

    [28] [28] Liu B W, Zhang M J, Zhao Z Y, et al. Synthesis, structure, and optical properties of the quaternary diamond-like compounds I2-II-IV-VI4 (I=Cu; II=Mg; IV=Si, Ge; VI=S, Se)[J].Journal of Solid State Chemistry,2013,204: 251-256.

    [29] [29] Li G M, Chu Y, Zhou Z X. From AgGaS2 to Li2ZnSiS4: realizing impressive high laser damage threshold together with large second-harmonic generation response[J].Chemistry of Materials,2018,30(3): 602-606.

    [30] [30] Brant J A, Clark D J, Kim Y S, et al. Outstanding laser damage threshold in Li2MnGeS4 and tunable optical nonlinearity in diamond-like semiconductors[J].Inorganic Chemistry,2015,54(6): 2809-2819.

    [31] [31] Lekse J W, Leverett B M, Lake C H, et al. Synthesis, physicochemical characterization and crystallographic twinning of Li2ZnSnS4[J].Journal of Solid State Chemistry,2008,181(12): 3217-3222.

    [32] [32] Brant J A, Cruz C D, Yao J L, et al. Field-induced spin-flop in antiferromagnetic semiconductors with commensurate and incommensurate magnetic structures: Li2FeGeS4(LIGS) and Li2FeSnS4(LITS)[J].Inorganic Chemistry,2014,53(23): 12265-12274.

    [33] [33] Parthé E, Yvon K, Deitch R H. The crystal structure of Cu2CdGeS4 and other quaternary normal tetrahedral structure compounds[J].Acta Crystallographica Section B,1969,25(6): 1164-1174.

    [34] [34] Gruzdev V S, Volgin V Iu, Spiridonov E M, et al. Velikite Cu2HgSnS4-the mercury member of the stannite group[J].Doklady Akademii Nauk Sssr,1988,300(2): 432-435.

    Tools

    Get Citation

    Copy Citation Text

    YANG Ya, WU Kui. Structure-Performance Relationship in the Diamond-Like Infrared Nonlinear Optical Materials with I2-II-IV-VI4 Type[J]. Journal of Synthetic Crystals, 2020, 49(8): 1457

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Nov. 11, 2020

    The Author Email: Kui WU (wukui@hbu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics