Journal of Inorganic Materials, Volume. 36, Issue 4, 411(2021)

Preparation and Thermal Properties of Rare Earth Tantalates (RETaO4) High-Entropy Ceramics

Jiatong ZHU, Zhihao LOU, Ping ZHANG, Jia ZHAO, Xuanyu MENG, Jie XU*, and Feng GAO
Author Affiliations
  • State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
  • show less
    References(26)

    [2] CAO X Q, VASSEN R, STOVER D. Ceramic materials for thermal barrier coatings[J]. Journal of the European Ceramics Society, 24, 1-10(2004).

    [3] RACEK O, BEMDT C C. Mechanical property variations within thermal barrier coatings[J]. Surface Coating Technology, 202, 362-369(2007).

    [4] FENG J, REN X R, WANG X Y et al. Thermal conductivity of ytterbia-stabilized zirconia[J]. Script Materialia, 66, 41-44(2012).

    [5] ZHAO M, REN X R, YANG J et al. Thermo-mechanical properties of ThO2-doped Y2O3 stabilized ZrO2 for thermal barrier coatings[J]. Ceramics International, 42, 501-508(2016).

    [6] ZHENG Q, WU F S, CHEN L et al. Thermophysical and mechanical properties of YTaO4 ceramic by niobium substitution tantalum[J]. Materials Letters, 268, 127586(2020).

    [7] SHIAN S, SARIN P, GURAK M et al. The tetragonal-monoclinic, ferroelastic transformation in yttrium tantalate and effect of zirconia alloying[J]. Acta Materialia, 69, 196-202(2014).

    [8] WANG J, CHONG X Y, ZHOU R et al. Microstructure and thermal properties of RETaO4 (RE= Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials[J]. Scripta Materialia, 126, 24-28(2017).

    [9] YEH J W, CHEN S K, LIN S J et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 6, 299-303(2004).

    [10] OSES C, TOHER C, CURTAROLO S et al. High-entropy ceramics[J]. Nature Reviews Materials, 5, 295-309(2020).

    [12] CHEN L, WANG K, SU W T et al. Research progress of transition metal non-oxide high-entropy ceramics[J]. Journal of Inorganic Materials, 35, 748-758(2020).

    [13] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 122, 448-511(2017).

    [15] YAN X L, CONSTANTIN L, LU Y F et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity[J]. Journal of the American Ceramic Society, 101, 4486-4491(2018).

    [16] LIU D, LIU H H, NING S S et al. Synthesis of high-purity high-entropy metal diboride powders by boro/carbothermal reduction[J]. Journal of the American Ceramic Society, 102, 7071-7076(2019).

    [17] JIN T, SANG X H, UNOCIC R R et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy[J]. Advanced Materials, 30, 1707512(2018).

    [18] BRAUN J L, ROST C M, LIM M et al. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides[J]. Advanced Materials, 30, 1805004(2018).

    [19] LI F, ZHOU L, LIU J X et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials[J]. Journal of Advanced Ceramics, 8, 576-582(2019).

    [20] WRIGHT A J, WANG Q Y, HUANG C Y et al. From high-entropy ceramics to compositionally-complex ceramics: a case study of fluorite oxides[J]. Journal of the European Ceramic Society, 40, 2120-2129(2020).

    [21] ZHOU L, LI F, LIU J X et al. High-entropy thermal barrier coating of rare-earth zirconate: a case study on (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 prepared by atmospheric plasma spraying[J]. Journal of the European Ceramic Society, 40, 5731-5739(2020).

    [22] REN K, WANG Q K, SHAO G et al. Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating[J]. Scripta Materialia, 78, 382-386(2020).

    [23] SCHLICHTING K W, PADTURE N P, KLEMENS P G. Thermal conductivity of dense and porous yttria-stabilized zirconia[J]. Journal of Materials Science, 36, 3003-3010(2001).

    [24] EVANS A G, CHARLES E A. Fracture toughness determinations by indentation[J]. Journal of the American Ceramic Society, 59, 371-372(1976).

    [25] CHEN L, HU M Y, WU P et al. Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics[J]. Journal of the American Ceramic Society, 102, 4809-4821(2019).

    [26] WU P, CHEN L, CHEN W et al. Investigation on microstructures and thermo-physical properties of ferroelastic (Y1-xDyx)TaO4 ceramics[J]. Materialia, 4, 478-486(2018).

    [27] LAI C H, LIN S J, YEH J W et al. Preparation and characterization of AlCrTaTiZr muti-element nitride coatings[J]. Surface Coating Technology, 201, 3275-3280(2006).

    Tools

    Get Citation

    Copy Citation Text

    Jiatong ZHU, Zhihao LOU, Ping ZHANG, Jia ZHAO, Xuanyu MENG, Jie XU, Feng GAO. Preparation and Thermal Properties of Rare Earth Tantalates (RETaO4) High-Entropy Ceramics[J]. Journal of Inorganic Materials, 2021, 36(4): 411

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH PAPER

    Received: Aug. 5, 2020

    Accepted: --

    Published Online: Nov. 24, 2021

    The Author Email: Jie XU (xujie@nwpu.edu.cn)

    DOI:10.15541/jim20200426

    Topics