Laser & Optoelectronics Progress, Volume. 58, Issue 11, 1127002(2021)

Performance Analysis of Multi-Party Measurement-Device-Independent Quantum Key Distribution Based on W States

Yefeng He1,2, Lina Li1、*, Qian Bai1, Sihao Chen1, and Yuwei Qiang1
Author Affiliations
  • 1School of Cyberspace Security, Xi'an University of Posts and Telecommunications, Xi'an , Shaanxi 710121, China
  • 2Guangxi Key Laboratory of Cryptography and Information Security, Guilin University of Electronic Technology, Guilin , Guangxi 541004, China
  • show less
    References(31)

    [1] Bennett C H, Brassard G. An update on quantum cryptography[M]. Advances in cryptology, 196, 475-480(1984).

    [2] Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol[J]. Physical Review Letters, 85, 441-444(2000).

    [3] Mayers D. Unconditional security in quantum cryptography[J]. Journal of the ACM, 48, 351-406(2001).

    [4] Gottesman D, Lo H K, Lutkenhaus N et al. Security of quantum key distribution with imperfect devices[C], 136(2004).

    [5] Bennett C H, Brassard G, Ekert A K et al. Quantum cryptography[J]. Scientific American, 267, 50-57(1992).

    [6] Wang Q, Wang X B. Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources[J]. Physical Review A, 88, 052332(2013).

    [7] Zhu Q L, Shi L, Wei J H et al. Background light suppression in free space quantum key distribution[J]. Laser & Optoelectronics Progress, 55, 060004(2018).

    [8] Makarov V. Controlling passively quenched single photon detectors by bright light[J]. New Journal of Physics, 11, 065003(2009).

    [9] Zhao Y, Fung C H F, Qi B et al. Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems[J]. Physical Review A, 78, 042333(2008).

    [10] Makarov V, Skaar J. Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols[J]. Quantum Information & Computation, 8, 622-635(2008).

    [11] Lydersen L, Skaar J, Makarov V. Tailored bright illumination attack on distributed-phase-reference protocols[J]. Journal of Modern Optics, 58, 680-685(2011).

    [12] Lo H K, Curty M, Qi B et al. Measurement-device-independent quantum key distribution[J]. Physical Review Letters, 108, 130503(2012).

    [13] He Y F, Wang D, Yang H J et al. Quantum key distribution based on heralded single photon sources and quantum memory[J]. Chinese Journal of Lasers, 46, 0412001(2019).

    [14] Li M, Zhang C M, Yin Z Q et al. Measurement-device-independent quantum key distribution with modified coherent state[J]. Optics Letters, 39, 880-883(2014).

    [15] He Y F, Li C Y, Guo J R et al. Passive measurement-device-independent quantum key distribution based on heralded pair coherent states[J]. Chinese Journal of Lasers, 47, 0912002(2020).

    [16] He Y F, Li D Q, Song C et al. Quantum key distribution protocol based on odd coherent sources and orbital angular momentum[J]. Chinese Journal of Lasers, 45, 0712001(2018).

    [17] He Y F, Guo J R, Li C Y et al. Fluctuation analysis of key distribution protocol based on heralded single-photon source and orbital angular momentum[J]. Chinese Journal of Lasers, 47, 0412001(2020).

    [18] Hwang T, Lee K C, Li C M et al. Provably secure three-party authenticated quantum key distribution protocols[J]. IEEE Transactions on Dependable and Secure Computing, 4, 71-80(2007).

    [20] Matsumoto R. Multiparty quantum-key-distribution protocol without use of entanglement[J]. Physical Review A, 76, 062316(2007).

    [21] Liu C Q, Zhu C H, Ma S Q et al. Multi-party measurement-device-independent quantum key distribution based on cluster states[J]. International Journal of Theoretical Physics, 57, 726-739(2018).

    [22] Zhu C H, Xu F H, Pei C X et al. W-state analyzer and multi-party measurement-device-independent quantum key distribution[J]. Scientific Reports, 5, 17449(2015).

    [23] Fu Y, Yin H L, Chen T Y et al. Long-distance measurement-device-independent multiparty quantum communication[J]. Physical Review Letters, 114, 090501(2015).

    [24] Gorbachev V N, Trubilko A I. On multiparticle W states, their implementations and application in the quantum informational problems[J]. Laser Physics Letters, 3, 59-70(2006).

    [25] Liu C Q. Research on practical measurement-device independent quantum key distribution system[D](2017).

    [26] Wu C F, Du Y N, Wang J D et al. Analysis on performance optimization in measurement-device-independent quantum key distribution using weak coherent states[J]. Acta Physica Sinica, 65, 100302(2016).

    [27] Xu F H, Curty M, Qi B et al. Measurement-device-independent quantum cryptography[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 148-158(2015).

    [28] Hwang W Y. Quantum key distribution with high loss: toward global secure communication[J]. Physical Review Letters, 91, 057901(2003).

    [29] Lo H K, Ma X F, Chen K et al. Decoy state quantum key distribution[J]. Physical Review Letters, 94, 230504(2005).

    [30] Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography[J]. Physical Review Letters, 94, 230503(2005).

    [31] Rubenok A, Slater J A, Chan P et al. Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks[J]. Physical Review Letters, 111, 130501(2013).

    Tools

    Get Citation

    Copy Citation Text

    Yefeng He, Lina Li, Qian Bai, Sihao Chen, Yuwei Qiang. Performance Analysis of Multi-Party Measurement-Device-Independent Quantum Key Distribution Based on W States[J]. Laser & Optoelectronics Progress, 2021, 58(11): 1127002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Oct. 27, 2020

    Accepted: Dec. 3, 2020

    Published Online: Jun. 7, 2021

    The Author Email: Li Lina (1826971490@qq.com)

    DOI:10.3788/LOP202158.1127002

    Topics