High Power Laser and Particle Beams, Volume. 32, Issue 3, 032001(2020)

Research progress of fabrication techniques for laser inertial confinement fusion target

Shasha Gao, Xiaojun Wu, Zhibing He*, Xiaoshan He, Tao Wang, Fanghua Zhu, and Zhanwen Zhang
Author Affiliations
  • Research Center of Laser Fusion, CAEP, P. O. Box 919-987, Mianyang 621900, China
  • show less
    References(72)

    [4] Landen O L, Edwards J, Haan S W. Capsule implosion optimization during the indirect-drive National Ignition Campaign[J]. Physics of Plasmas, 18, 051022(2011).

    [11] [11] Nikroo A, Czechowicz D G, Castillo E R, et al. Production of higher strength thin walled glow disge polymer shells f cryogenic experiments at OMEGA[R]. GAA23881, 2002.

    [14] Brusasco R, Saculla M, and Cook R. Preparation of germanium doped plasma polymerized coatings as inertial confinement fusion target ablators[J]. J Vac Sci Technol, A13, 948-954(1995).

    [18] Lepro X, Ehrmann P, Rodrıguez J. Enhancing the oxidation stability of polydivinylbenzene films via residual pendant vinyl passivation[J]. Chemistry Select, 3, 500-506(2018).

    [20] [20] Biener J, Mirkarimi P B, Tringe J W, et al. Diamond ablats f Inertial Confinement Fusion[R]. UCRLJRNL213214, 2005.

    [25] Kato S, Hiroki, Yamada. Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion[J]. Diamond & Related Materials, 86, 15-19(2018).

    [34] [34] Bae J, Rodriguez J, Kong C, et al. Beryllium capsule processing improvements: Polishing mrel removal[R]. IFT\P2019012, 2019.

    [42] [42] Haan S W, Atherton J, Clark D S, et al. NIF ignition campaign target perfmance requirements: status May 2012[R]. LLNLPROC583732, 2012.

    [51] Tsuji R. Trajectory adjusting system using a magnetic lens for a Pb-coated superconducting IFE target[J]. Fusion Engineering and Design, 81, 2877-2885(2006).

    [53] Aleksandrova I V, Koresheva E R. Review on high repetition rate and mass production of the cryogenic targets for laser IFE[J]. High Power Laser Science and Engineering, e11, 1-24(2017).

    [56] Young P E, Rosen M D, Hammer J H. Demonstration of the density dependence of X-ray flux in a laser-driven hohlraum[J]. Physical Review Letters, 101, 81-84(2008).

    [60] Kline J L, Batha S H, Benedetti L R. Progress of indirect drive inertial confinement fusion in the United States[J]. Nuclear Fusion, 112018(2019).

    [68] Bhandarkar S, Baumann T, Alfonso N. Fabrication of low-density foam liners in hohlraums for NIF targets[J]. Fusion Science and Technology, 73, 194-209(2017).

    [69] Horwood C, Stadermann M, Biener M. Platinum electrodeposition for supported ALD templated foam hohlraum liners[J]. Fusion Science and Technology, 73, 219-228(2017).

    [74] [74] Haan S W, Kritcher A L, Clark D S, et al. Comparison of the three NIF ablats[R]. LLNLTR741418, 2017.

    [75] [75] Nikroo A. Target fabrication at Lawrence Liverme National Labaty[R]. LLNLPRES956011, 2019.

    CLP Journals

    [1] Haoxuan Si, Hao Xu, Huiyao Du, Shengzhen Yi, Zhanshan Wang. Areal density measurement technology for metal foils based on X-ray bent crystal imaging[J]. High Power Laser and Particle Beams, 2023, 35(11): 112001

    [2] Yuling Tang, Qingxian Zhao, Jiaming Liu, Shouhua Luo. Surface defect detection method for capsule based on micro-CT image[J]. High Power Laser and Particle Beams, 2024, 36(1): 012001

    Tools

    Get Citation

    Copy Citation Text

    Shasha Gao, Xiaojun Wu, Zhibing He, Xiaoshan He, Tao Wang, Fanghua Zhu, Zhanwen Zhang. Research progress of fabrication techniques for laser inertial confinement fusion target[J]. High Power Laser and Particle Beams, 2020, 32(3): 032001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jan. 1, 2020

    Accepted: --

    Published Online: Mar. 19, 2020

    The Author Email: Zhibing He (He_zhibing@126.com)

    DOI:10.11884/HPLPB202032.200039

    Topics