Chinese Optics Letters, Volume. 20, Issue 7, 072601(2022)

Underwater Bessel-like beams with enlarged depth of focus based on fiber microaxicon Editors' Pick

Xiaoying He*, Mengyuan Li, and Lan Rao**
Author Affiliations
  • School of Electronic Engineering, Beijing Key Laboratory of Space-Ground Interconnection and Convergence, and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    Figures & Tables(6)
    (a) Schematic diagram of the fiber microaxicon, (b) formation principle of the refraction angle for the fiber microaxicon.
    Power distribution of Bessel-like beams from fiber microaxicons with different cone angles of 80°, 100°, 120°, and 140° at different visible wavelengths of (a) 470 nm, (b) 520 nm, and (c) 632 nm in the air.
    Power distribution of Bessel-like beams underwater from fiber microaxicons with different cone angles of 40°, 60°, 80°, 100°, 120°, and 140° at different wavelengths of (a) 470 nm, (b) 520 nm, and (c) 632 nm.
    Normalized FWHM and DOF as functions of fiber microaxicons cone angle θ. The solid black lines represent the value of DOF, and the dotted lines represent the value of FWHM. (a) Bessel-like beams generated in the air; (b) Bessel-like beams generated underwater.
    Transverse power distributions of Bessel-like beams with the blue (470 nm), green (520 nm), and red (632 nm) lights generated by the fiber microaxicons underwater for propagation at (a) 500 m, (b) 2000 m, and (c) 4000 m.
    Transverse power distributions of Gaussian beams with the blue (470 nm), green (520 nm), and red (632 nm) lights generated by the fiber microaxicons underwater for propagation at 500 m.
    Tools

    Get Citation

    Copy Citation Text

    Xiaoying He, Mengyuan Li, Lan Rao. Underwater Bessel-like beams with enlarged depth of focus based on fiber microaxicon[J]. Chinese Optics Letters, 2022, 20(7): 072601

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: Feb. 13, 2022

    Accepted: Apr. 8, 2022

    Published Online: May. 7, 2022

    The Author Email: Xiaoying He (xiaoyinghe@bupt.edu.cn), Lan Rao (raolan@bupt.edu.cn)

    DOI:10.3788/COL202220.072601

    Topics