Optics and Precision Engineering, Volume. 30, Issue 16, 2021(2022)
Skin lesion segmentation based on high-resolution composite network
[1] WEI Z H, SHI F, SONG H et al. Attentive boundary aware network for multi-scale skin lesion segmentation with adversarial training[J]. Multimedia Tools and Applications, 79, 27115-27136(2020).
[2] [2] 2任凤雷, 何昕, 魏仲慧, 等. 基于DeepLabV3+与超像素优化的语义分割[J]. 光学 精密工程, 2019, 27(12): 2722-2729. doi: 10.3788/ope.20192712.2722RENF L, HEX, WEIZ H, et al. Semantic segmentation based on DeepLabV3+ and superpixel optimization[J]. Opt. Precision Eng., 2019, 27(12): 2722-2729.(in Chinese). doi: 10.3788/ope.20192712.2722
[3] [3] 3秦传波, 宋子玉, 曾军英, 等. 联合多尺度和注意力-残差的深度监督乳腺癌分割[J]. 光学 精密工程, 2021, 29(4): 877-895. doi: 10.37188/OPE.20212904.0877QINC B, SONGZ Y, ZENGJ Y, et al. Deeply supervised breast cancer segmentation combined with multi-scale and attention-residuals[J]. Opt. Precision Eng., 2021, 29(4): 877-895.(in Chinese). doi: 10.37188/OPE.20212904.0877
[4] ZHAO C, SHUAI R J, MA L et al. Segmentation of skin lesions image based on U-Net + +[J]. Multimedia Tools and Applications, 81, 8691-8717(2022).
[5] GARG S, JINDAL B. Skin lesion segmentation using k-mean and optimized fire fly algorithm[J]. Multimedia Tools and Applications, 80, 7397-7410(2021).
[6] [6] 6邹永宁, 张智斌, 李琦, 等. 基于Hessian矩阵和支持向量机的CT图像裂纹分割[J]. 光学 精密工程, 2021, 29(10): 2517-2527. doi: 10.37188/OPE.2021.0349ZOUY N, ZHANGZ B, LIQ, et al. Crack detection and segmentation in CT images using Hessian matrix and support vector machine[J]. Opt. Precision Eng., 2021, 29(10): 2517-2527.(in Chinese). doi: 10.37188/OPE.2021.0349
[7] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C], 234-241(2015).
[9] RADMAN A, SALLAM A, SUANDI S A. Deep residual network for face sketch synthesis[J]. Expert Systems With Applications, 190, 115980(2022).
[10] BAGHERSALIMI S, BOZORGTABAR B, SCHMID-SAUGEON P et al. DermoNet: densely linked convolutional neural network for efficient skin lesion segmentation[J]. EURASIP Journal on Image and Video Processing, 1-10(2019).
[11] WEI Z H, SONG H, CHEN L et al. Attention-based DenseUnet network with adversarial training for skin lesion segmentation[J]. IEEE Access, 7, 136616-136629(2019).
[12] SARKER M M K, RASHWAN H A, AKRAM F et al. SLSDeep: skin lesion segmentation based on dilated residual and pyramid pooling networks[C], 21-29(2018).
[13] [13] 13孟颖, 田启川, 吴施瑶. 基于U型网络复合特征的视网膜血管分割方法[J]. 计算机应用与软件, 2021, 38(8): 227-232, 267. doi: 10.3969/j.issn.1000-386x.2021.08.035MENGY, TIANQ C, WUS Y. Retinal vessel segmentation method of composite feature based on u-net[J]. Computer Applications and Software, 2021, 38(8): 227-232, 267.(in Chinese). doi: 10.3969/j.issn.1000-386x.2021.08.035
[15] SINGH S, KRISHNAN S. Filter response normalization layer: eliminating batch dependence in the training of deep neural networks[C], 11234-11243(2020).
[16] HUANG G, LIU Z, VAN DER MAATEN L et al. Densely connected convolutional networks[C], 4700-4708(2017).
[17] HOU Q B, ZHANG L, CHENG M M et al. Strip pooling: rethinking spatial pooling for scene parsing[C], 4002-4011(2020).
[18] ZHAO H S, SHI J P, QI X J et al. Pyramid scene parsing network[C], 6230-6239(2017).
[19] [19] 19汪水源, 侯志强, 王囡, 等. 基于自适应模板更新与多特征融合的视频目标分割算法[J]. 光电工程, 2021, 48(10): 210193.WANGS Y, HOUZ Q, WANGN, et al. Video object segmentation algorithm based on adaptive template updating and multi-feature fusion[J]. Opto-Electronic Engineering, 2021, 48(10): 210193.(in Chinese)
[20] SALEHI S S M, ERDOGMUS D, GHOLIPOUR A. Tversky loss function for image segmentation using 3D fully convolutional deep networks[C], 379-387(2017).
[21] GUTMAN D, CODELLA N C F, CELEBI E et al. Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC)[J]. arXiv preprint arXive:1605, 01397(2016).
[22] CODELLA N C F, GUTMAN D, CELEBI E et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC)[C], 168-172(2018).
[23] TSCHANDL P, ROSENDAHL C, KITTLER H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions[J]. Scientific Data, 5, 180161(2018).
[24] MENDONÇA T, FERREIRA P M, MARQUES J S et al. PH2 - A dermoscopic image database for research and benchmarking[C], 5437-5440(2013).
[25] QAMAR S, AHMAD P, SHEN L L. Dense encoder-decoder-based architecture for skin lesion segmentation[J]. Cognitive Computation, 13, 583-594(2021).
[26] GU R, WANG G T, SONG T et al. CA-net: comprehensive attention convolutional neural networks for explainable medical image segmentation[J]. IEEE Transactions on Medical Imaging, 40, 699-711(2021).
[27] [27] 27杨国亮, 洪志阳, 王志元, 等. 基于改进全卷积网络的皮肤病变图像分割[J]. 计算机工程与设计, 2018, 39(11): 3500-3505.YANGG L, HONGZ Y, WANGZ Y, et al. Image segmentation of skin lesions based on improved fully convolution network[J]. Computer Engineering and Design, 2018, 39(11): 3500-3505.(in Chinese)
[28] DONG Y Y, WANG L J, CHENG S L et al. FAC-net: feedback attention network based on context encoder network for skin lesion segmentation[J]. Sensors (Basel, Switzerland), 21, 5172(2021).
[29] MIRIKHARAJI Z, IZADI S, KAWAHARA J et al. Deep auto-context fully convolutional neural network for skin lesion segmentation[C], 877-880(2018).
[30] TONG X Z, WEI J Y, SUN B et al. ASCU-net: attention gate, spatial and channel attention U-net for skin lesion segmentation[J]. Diagnostics (Basel, Switzerland), 11, 501(2021).
[31] NASR-ESFAHANI E, RAFIEI S, JAFARI M H et al. Dense pooling layers in fully convolutional network for skin lesion segmentation[J]. Computerized Medical Imaging and Graphics, 78, 101658(2019).
[32] XIE F Y, YANG J W, LIU J et al. Skin lesion segmentation using high-resolution convolutional neural network[J]. Computer Methods and Programs in Biomedicine, 186, 105241(2020).
[33] TANG Y J, YANG F, YUAN S F et al. A multi-stage framework with context information fusion structure for skin lesion segmentation[C], 1407-1410(2019).
[34] VESAL S, RAVIKUMAR N, MAIER A. SkinNet: a deep learning framework for skin lesion segmentation[C], 1-3(2018).
[35] ÜNVER H M, AYAN E. Skin lesion segmentation in dermoscopic images with combination of YOLO and GrabCut algorithm[J]. Diagnostics (Basel, Switzerland), 9, 72(2019).
[36] LEI B Y, XIA Z M, JIANG F et al. Skin lesion segmentation via generative adversarial networks with dual discriminators[J]. Medical Image Analysis, 64, 101716(2020).
[37] JIN Q G, CUI H, SUN C M et al. Cascade knowledge diffusion network for skin lesion diagnosis and segmentation[J]. Applied Soft Computing, 99, 106881(2021).
[38] RAMADAN R. CU-net: a new improved multi-input color U-net model for skin lesion semantic segmentation[J]. IEEE Access, 10, 15539-15564(2022).
[39] WU H S, PAN J Q, LI Z Y et al. Automated skin lesion segmentation via an adaptive dual attention module[J]. IEEE Transactions on Medical Imaging, 40, 357-370(2021).
[40] HU K, LU J, LEE D J et al. AS-net: attention synergy network for skin lesion segmentation[J]. Expert Systems With Applications, 201, 117112(2022).
Get Citation
Copy Citation Text
Liming LIANG, Longsong ZHOU, Jun FENG, Xiaoqi SHENG, Jian WU. Skin lesion segmentation based on high-resolution composite network[J]. Optics and Precision Engineering, 2022, 30(16): 2021
Category: Information Sciences
Received: Mar. 13, 2022
Accepted: --
Published Online: Sep. 22, 2022
The Author Email: Jian WU (wujian@jxust.edu.cn)