Laser & Optoelectronics Progress, Volume. 48, Issue 11, 110605(2011)

Progress of Metallic Core Microstructured Fibers

Yan Haozhe*, Dai Nengli, Peng Jinggang, Jiang Zuowen, Li Haiqing, Yang Lüyun, and Li Jinyan
Author Affiliations
  • [in Chinese]
  • show less
    References(56)

    [1] [1] Junichi Takahara, Suguru Yamagishi, Hiroaki Taki et al.. Guiding of a one-dimensional optical beam with nanometer diameter[J]. Opt. Lett., 1997, 22(7): 475~477

    [2] [2] G. F. Taylor. A method of drawing metallic filaments and a discussion of their properties and uses[J]. Phys. Rev., 1924, 23(5): 655~660

    [3] [3] I. W. Donald, B. L. Metcalfe. The preparation, properties and applications of some glass-coated metal filaments prepared by the Taylor-wire process[J]. J. Mater. Sci., 1996, 31(5): 1139~1149

    [4] [4] Xia Yu, Ying Zhang, Shanshan Pan et al.. A selectively coated photonic crystal fiber based surface plasmon resonance sensor[J]. J. Opt., 2010, 12(1): 1~4

    [5] [5] S. Zhang, X. Yu, P. Shum et al.. Highly sensitive pressure-induced plasmon resonance birefringence in a silver-coated photonic crystal fiber[J]. J. Phys.: Conf. Ser., 2011, 276(1): 1~7

    [6] [6] Boris T. Kuhlmey, Karrnan Pathmanandavel, Ross C. McPhedran. Multipole analysis of photonic crystal fibers with coated inclusions[J]. Opt. Express, 2006, 14(22): 10851~10864

    [7] [7] A. Hassani, M. Skorobogatiy. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics[J]. Opt. Express, 2006, 14(24): 11616~11621

    [8] [8] Alireza Hassani, Maksim Skorobogatiy. Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness[J]. J. Opt. Soc. Am. B, 2009, 26(8): 1550~1557

    [9] [9] X. Zhang, R. Wang,F. M. Cox et al.. Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers[J]. Opt. Express, 2007, 15(24): 16270~16278

    [10] [10] Ekmel Ozbay. Plasmonics: Merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189~193

    [11] [11] Rashid Zia, Jon A. Schuller, Anu Chandran et al.. Plasmonics: the next chip-scale technology[J]. Mater. Today, 2006, 9(7-8): 20~27

    [12] [12] Tyagi, Hemant Kumar. Germanium and Gold Wire Arrays Embedded in Silica Photonic Crystal Fibers[D]. Nürnberg: University of Erlangen-Nürnberg, 2011. 1~207

    [13] [13] I. W. Donald. Production, properties and applications of microwire and related products[J]. J. Mater. Sci., 1987, 22(8): 2661~2679

    [14] [14] Jing Hou, David Bird, Alan George et al.. Metallic mode confinement in microstructured fibres[J]. Opt. Express, 2008, 16(9): 5983~5990

    [15] [15] C. G. Poulton, M. A. Schmidt, G. J. Pearce et al.. Numerical study of guided modes in arrays of metallic nanowires[J]. Opt. Lett., 2007, 32(12): 1647~1649

    [16] [16] A. Witkowska, K. Lai, S. G. Leon-Saval et al.. All-fiber anamorphic core-shape transitions[J]. Opt. Lett., 2006, 31(18): 2672~2674

    [17] [17] W. J. Wadsworth, A. Witkowska, S. G. Leon-Saval et al.. Hole inflation and tapering of stock photonic crystal fibres[J]. Opt. Express, 2005, 13(17): 6541~6549

    [18] [18] M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi et al.. Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires[J]. Phys. Rev. B, 2008, 77(3): 033417

    [19] [19] H. W. Lee, M. A. Schmidt, H. K. Tyagi et al.. Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber[J]. Appl. Phys. Lett., 2008, 93(11): 111102

    [20] [20] G. Schider, J. R. Krenn, A. Hohenau et al.. Plasmon dispersion relation of Au and Ag nanowires[J]. Phyh. Rev. B, 2003, 68(15): 155427

    [21] [21] Matthew Pelton, Mingzhao Liu, Sungnam Park et al.. Ultrafast resonant optical scattering from single gold nanorods: Large nonlinearities and plasmon saturation[J]. Phyh. Rev. B, 2006, 73(15): 155419

    [22] [22] H. K. Tyagi, H. W. Lee, P. Uebel et al.. Plasmon resonances on gold nanowires directly drawn in a step-index fiber[J]. Opt. Lett., 2010, 35(15): 2573~2575

    [23] [23] James W. Fleming. Dispersion in GeO2-SiO2 glasses[J]. Appl. Opt., 1984, 23(24): 4486~4493

    [24] [24] Gao Xingyu, Ning Lihua. Optical properties research on surface plasmons excited by metallic nanostructure waveguides[J]. Laser & Optoelectronics Progress, 2011, 48(4): 042401

    [25] [25] Yuan Xiaodong, Liu Ken, Ye Weimin et al.. Study on extraordinary optical transmission through arrays of holes metal films based on scattering matrix method[J]. Acta Optica Sinica, 2011, 31(1): 0131001

    [26] [26] M. A. Ordal, Robert J. Bell, R. W. Alexander et al.. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W[J]. Appl. Opt., 1985, 24(24): 4493~4499

    [27] [27] P. B. Johnson, E. W. Christy. Optical constants of the noble metals[J]. Phys. Rev. B, 1972, 6(12): 4370~4379

    [30] [30] Jean-Claude Weeber, Alain Dereux, Christian Girard et al.. Plasmon polaritons of metallic nanowires for controlling submicron propagation of light[J]. Phys. Rev. B, 1999, 60(12): 9061~9068

    [32] [32] L. N. Prill Sempere, M. A. Schmidt, H. K. Tyagi et al.. Metal nanowire arrays in photonic crystal fibers[C]. IEEE/LEOS Winter Topical Meeting Series, 2008. 206~207

    [33] [33] M. A. Schamidt, P. St. J. Russell. Long-range spiralling surface plasmon modes on metallic nanowires[J]. Opt. Express, 2008, 16(18): 13617~13623

    [34] [34] Ron Spittel, Denny Hoh, Sven Bruckner et al.. Selective filling of metals into photonic crystal fibers[C]. SPIE, 2011, 7946: 79460Z

    [35] [35] Arthur R. Davoyan, Ilya V. Shadrivov, Sergey I. Bozhevolnyi et al.. Backward and forward modes guided by metal-dielectric-metal plasmonic waveguides[J]. J. Nanophoto., 2010, 4: 043509

    [36] [36] Zhongxiang Zhang, Minglie Hu, Kamtai Chan et al.. Plasmonic waveguiding in a hexagonally ordered metal wire array[J]. Opt. Lett., 2010, 35(23): 3901~3903

    [37] [37] A. Manjavacas, F. J. Garcia de Abajo. Robust plasmon waveguides in strongly interacting nanowire arrays[J]. Nano Lett., 2009, 9(4): 1285~1289

    [38] [38] A. Manjavacas, F. J. Garcia de Abajo. Coupling of gap plasmons in multi-wire waveguides[J]. Opt. Express, 2009, 17(22): 19401~19413

    [39] [39] Akira Nagasaki, Kunimasa Saitoh, Masanori Koshiba. Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes[J]. Opt. Express, 2011, 19(4): 3799~3808

    [40] [40] James A. Harrington. A review of IR transmitting, hollow waveguides[J]. Fiber Integr. Opt., 2000, 19(3): 211~217

    [41] [41] B. Temelkuran, S. D. Hart, G. Benoit et al.. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission[J]. Nature, 2002, 420: 650~653

    [42] [42] Min Yan, Niels Asger Mortensen. Hollow-core infrared fiber incorporating metal-wire metamaterial[J]. Opt. Express, 2009, 17(17): 14851~14864

    [43] [43] J. Ward. Towards invisible glass[J]. Vac., 1972, 22(9): 369~375

    [44] [44] Andrea Alù, Nader Engheta. Achieving transparency with plasmonic and metamaterial coatings[J]. Phys. Rev. E, 2005, 72: 016623

    [45] [45] A. Alù, N. Engheta. Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights[J]. Opt. Express, 2007, 15(6): 3318~3332

    [46] [46] B. Edwards, A. Alù, M. G. Silveirinha et al.. Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials[J]. Phys. Rev. Lett., 2009, 103(15): 153901

    [47] [47] D. Schurig, J. J. Mock, B. J. Justice et al.. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977~980

    [48] [48] T. Ergin, N. Stenger, P. Brenner et al.. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328(5976): 337~339

    [49] [49] Alessandro Tuniz, Boris T. Kuhlmey, Parry Y. Chen et al.. Weaving the invisible thread: design of an optically invisible metamaterial fibre[J]. Opt. Express, 2010, 18(17): 18095~18105

    [50] [50] Niklas Myrén, Hkan Olsson, Lars Norin et al.. Wide wedge-shaped depletion region in thermally poled fiber with alloy electrodes[J]. Opt. Express, 2004, 12(25): 6093~6099

    [51] [51] Slawomir Ertman, Tomasz R. Wolinski, Dariusz Pysz et al.. Low-loss propagation and continuously tunable birefringence in high-index photonic crystal fibers filled with nematic liquid crystals[J]. Opt. Express, 2009, 17(21): 19298~19310

    [52] [52] D. A. Stuart, A. J. Haes, C. R. Yonzon et al.. Biological applications of localised surface plasmonic phenomena[C]. IEE. Proc. Nanobiot., 2005, 152(1): 13~32

    [53] [53] T. P. White, B. T. Kuhlmey, R. C. McPhedran et al.. Multipole method for microstructured optical fibers. I. Formulation[J]. J. Opt. Soc. Am. B, 2002, 19(10): 2322~2330

    [54] [54] Boris T. Kuhlmey, Thomas P. White, Gilles Renversez et al.. Multipole method for microstructured optical fibers. II. Implementation and results[J]. J. Opt. Soc. Am. B, 2002, 19(10): 2331~2340

    [55] [55] Boris T. Kuhlmey, Karrnan Pathmanandavel, Ross C. McPhedran. Multipole analysis of photonic crystal fibers with coated inclusions[J]. Opt. Express, 2006, 14(22): 10851~10864

    [56] [56] Maziar P. Nezhad, Kevin Tetz, Yeshaiahu Fainman. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides[J]. Opt. Express, 2004, 12(17): 4072~4079

    CLP Journals

    [1] Liu Feifei, Zhang Xinping. Sensors Based on Metallic Photonic Structures Integrated onto End Facets of Fibers[J]. Laser & Optoelectronics Progress, 2017, 54(2): 20001

    Tools

    Get Citation

    Copy Citation Text

    Yan Haozhe, Dai Nengli, Peng Jinggang, Jiang Zuowen, Li Haiqing, Yang Lüyun, Li Jinyan. Progress of Metallic Core Microstructured Fibers[J]. Laser & Optoelectronics Progress, 2011, 48(11): 110605

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: May. 26, 2011

    Accepted: --

    Published Online: Sep. 30, 2011

    The Author Email: Haozhe Yan (shangmoyan@gmail.com)

    DOI:10.3788/lop48.110605

    Topics