Opto-Electronic Advances, Volume. 7, Issue 11, 240077-1(2024)

Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser

Qinxue Nie1, Yibo Peng2, Qiheng Chen1, Ningwu Liu1, Zhen Wang1, Cheng Wang2、*, and Wei Ren1、**
Author Affiliations
  • 1Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
  • 2School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • show less
    References(41)

    [1] A O’Keefe, DAG Deacon. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev Sci Instrum, 59, 2544-2551(1988).

    [2] D Romanini, AA Kachanov, N Sadeghi et al. CW cavity ring down spectroscopy. Chem Phys Lett, 264, 316-322(1997).

    [3] G Berden, R Peeters, G Meijer. Cavity ring-down spectroscopy: experimental schemes and applications. Int Rev Phys Chem, 19, 565-607(2000).

    [4] GW Truong, KO Douglass, SE Maxwell et al. Frequency-agile, rapid scanning spectroscopy. Nat Photonics, 7, 532-534(2013).

    [5] G Giusfredi, S Bartalini, S Borri et al. Saturated-absorption cavity ring-down spectroscopy. Phys Rev Lett, 104, 110801(2010).

    [6] G Gagliardi, HP Loock. Cavity-Enhanced Spectroscopy and Sensing(2014).

    [7] CS Goldenstein, RM Spearrin, JB Jeffries et al. Infrared laser-absorption sensing for combustion gases. Prog Energy Combust Sci, 60, 132-176(2017).

    [8] A Farooq, ABS Alquaity, M Raza et al. Laser sensors for energy systems and process industries: perspectives and directions. Prog Energy Combust Sci, 91, 100997(2022).

    [9] Q Chen, L Liang, QL Zheng et al. On-chip readout plasmonic mid-IR gas sensor. Opto-Electron Adv, 3, 190040(2020).

    [10] YH Liu, SD Qiao, C Fang et al. A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency. Opto-Electron Adv, 7, 230230(2024).

    [11] D Mondelain, S Vasilchenko, P Čermák et al. The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 μm. Phys Chem Chem Phys, 17, 17762-17770(2015).

    [12] DE Vogler, MW Sigrist. Near-infrared laser based cavity ringdown spectroscopy for applications in petrochemical industry. Appl Phys B, 85, 349-354(2006).

    [13] I Galli, S Bartalini, R Ballerini et al. Spectroscopic detection of radiocarbon dioxide at parts-per-quadrillion sensitivity. Optica, 3, 385-388(2016).

    [14] AD McCartt, J Jiang. Room-temperature optical detection of 14CO2 below the natural abundance with two-color cavity ring-down spectroscopy. ACS Sens, 7, 3258-3264(2022).

    [15] Y Chen, KK Lehmann, J Kessler et al. Measurement of the 13C/12C of atmospheric CH4 using near-infrared (NIR) cavity ring-down spectroscopy. Anal Chem, 85, 11250-11257(2013).

    [16] MT Cone, JD Mason, E Figueroa et al. Measuring the absorption coefficient of biological materials using integrating cavity ring-down spectroscopy. Optica, 2, 162-168(2015).

    [17] DA Long, AJ Fleisher, Q Liu et al. Ultra-sensitive cavity ring-down spectroscopy in the mid-infrared spectral region. Opt Lett, 41, 1612-1615(2016).

    [18] SG Baran, G Hancock, R Peverall et al. Optical feedback cavity enhanced absorption spectroscopy with diode lasers. Analyst, 134, 243-249(2009).

    [19] B Argence, B Chanteau, O Lopez et al. Quantum cascade laser frequency stabilization at the sub-Hz level. Nat Photonics, 9, 456-460(2015).

    [20] G Zhao, JF Tian, JT Hodges et al. Frequency stabilization of a quantum cascade laser by weak resonant feedback from a Fabry-Perot cavity. Opt Lett, 46, 3057-3060(2021).

    [21] J Ohtsubo. Semiconductor Lasers: Stability, Instability and Chaos(2013).

    [22] N Schunk, K Petermann. Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback. IEEE J Quantum Electron, 24, 1242-1247(1988).

    [23] J Morville, S Kassi, M Chenevier et al. Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking. Appl Phys B, 80, 1027-1038(2005).

    [24] S Kassi, T Stoltmann, M Casado et al. Lamb dip CRDS of highly saturated transitions of water near 1.4 μm. J Chem Phys, 148, 054201(2018).

    [25] J Burkart, D Romanini, S Kassi. Optical feedback frequency stabilized cavity ring-down spectroscopy. Opt Lett, 39, 4695-4698(2014).

    [26] G Zhao, DM Bailey, AJ Fleisher et al. Doppler-free two-photon cavity ring-down spectroscopy of a nitrous oxide (N2O) vibrational overtone transition. Phys Rev A, 101, 062509(2020).

    [27] V Motto-Ros, J Morville, P Rairoux. Mode-by-mode optical feedback: cavity ringdown spectroscopy. Appl Phys B, 87, 531-538(2007).

    [28] A Maity, S Maithani, M Pradhan. Cavity ring-down spectroscopy: recent technological advancements, techniques, and applications. Anal Chem, 93, 388-416(2021).

    [29] LA Coldren, SW Corzine, ML Mašanović. Dynamic effects. In Coldren LA, Corzine SW, Mašanović ML. Diode Lasers and Photonic Integrated Circuits(2012).

    [30] F Capasso, C Gmachl, DL Sivco et al. Quantum cascade lasers. Phys Today, 55, 34-40(2002).

    [31] FP Mezzapesa, LL Columbo, M Brambilla et al. Intrinsic stability of quantum cascade lasers against optical feedback. Opt Express, 21, 13748-13757(2013).

    [32] BB Zhao, XG Wang, C Wang. Strong optical feedback stabilized quantum cascade laser. ACS Photonics, 7, 1255-1261(2020).

    [33] BJ Orr, YB He. Rapidly swept continuous-wave cavity-ringdown spectroscopy. Chem Phys Lett, 512, 1-20(2011).

    [34] GW Truong, LW Perner, DM Bailey et al. Mid-infrared supermirrors with finesse exceeding 400000. Nat Commun, 14, 7846(2023).

    [35] XY Li, ZF Fan, Y Deng et al. 30-kHz linewidth interband cascade laser with optical feedback. Appl Phys Lett, 120, 171109(2022).

    [36] M Yang, Z Wang, QX Nie et al. Mid-infrared cavity-enhanced absorption sensor for ppb-level N2O detection using an injection-current-modulated quantum cascade laser. Opt Express, 29, 41634-41642(2021).

    [37] A Foltynowicz, FM Schmidt, W Ma et al. Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential. Appl Phys B, 92, 313-326(2008).

    [38] QX Nie, Z Wang, S Borri et al. Mid-infrared swept cavity-enhanced photoacoustic spectroscopy using a quartz tuning fork. Appl Phys Lett, 123, 054102(2023).

    [39] W Jin, YC Cao, F Yang et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range. Nat Commun, 6, 6767(2015).

    [40] XY Liao, XG Wang, K Zhou et al. Terahertz quantum cascade laser frequency combs with optical feedback. Opt Express, 30, 35937-35950(2022).

    [41] W Guan, ZP Li, SM Wu et al. Relative phase locking of a terahertz laser system configured with a frequency comb and a single-mode laser. Adv Photonics Nexus, 2, 026006(2023).

    Tools

    Get Citation

    Copy Citation Text

    Qinxue Nie, Yibo Peng, Qiheng Chen, Ningwu Liu, Zhen Wang, Cheng Wang, Wei Ren. Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser[J]. Opto-Electronic Advances, 2024, 7(11): 240077-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Apr. 5, 2024

    Accepted: Aug. 6, 2024

    Published Online: Feb. 21, 2025

    The Author Email: Wang Cheng (WRen), Ren Wei (CWang)

    DOI:10.29026/oea.2024.240077

    Topics