Journal of the Chinese Ceramic Society, Volume. 52, Issue 12, 3673(2024)

Node Metal Mixing Effect on Glass Transition Temperature of Metal-Organic Framework Materials

DU Zijuan1... GE Xuan2,3, QIAO Ang1,4, SHI Caijuan5, DU Tao3, YUE Yuanzheng3 and TAO Haizheng1,* |Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
  • 2School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai 200240, China
  • 3Department of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
  • 4Wuhan University of Technology Advanced Engineering Technology Research Institute of Zhongshan City, Zhongshan 528437, Guangdong, China
  • 5Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(34)

    [1] [1] MADSEN R S K, QIAO A, SEN J, et al. Ultrahigh-field 67Zn NMR reveals short-range disorder in zeolitic imidazolate framework glasses[J]. Science, 2020, 367(6485): 1473-1476.

    [2] [2] YIN Z, ZHAO Y B, ZENG M H. Challenge, advance and emerging opportunities for metal-organic framework glasses: From dynamic chemistry to material science and noncrystalline physics[J]. Acta Chim Sin, 2023, 81(3): 246.

    [3] [3] LIN R J, LI X M, KRAJNC A, et al. Mechanochemically synthesised flexible electrodes based on bimetallic metal-organic framework glasses for the oxygen evolution reaction[J]. Angew Chem Int Ed, 2022, 61(4): e202112880.

    [4] [4] GAO C W, JIANG Z J, QI S B, et al. Metal-organic framework glass anode with an exceptional cycling-induced capacity enhancement for lithium-ion batteries[J]. Adv Mater, 2022, 34(10): e2110048.

    [5] [5] ALI M A, REN J J, ZHAO T Y, et al. Broad mid-infrared luminescence in a metal-organic framework glass[J]. ACS Omega, 2019, 4(7): 12081-12087.

    [6] [6] FRENTZEL-BEYME L, KOLODZEISKI P, WEI J B, et al. Quantification of gas-accessible microporosity in metal-organic framework glasses[J]. Nat Commun, 2022, 13(1): 7750.

    [7] [7] FRENTZEL-BEYME L, KLO M, KOLODZEISKI P, et al. Meltable mixed-linker zeolitic imidazolate frameworks and their microporous glasses: From melting point engineering to selective hydrocarbon sorption[J]. J Am Chem Soc, 2019, 141(31): 12362-12371.

    [8] [8] DU Z J, QIAO A, ZHOU H M, et al. The glass transition in the high-density amorphous Zn/Co-ZIF-4[J]. Chem Commun, 2023, 59(79): 11871-11874.

    [9] [9] MADSEN R S K, STEPNIEWSKA M, YANG Y J, et al. Mixed metal node effect in zeolitic imidazolate frameworks[J]. RSC Adv, 2022, 12(17): 10815-10824.

    [10] [10] ZIELNIOK D, CRAMER C, ECKERT H. Structure/property correlations in ion-conducting mixed-network former glasses: &#8201 solid-state NMR studies of the system Na2O&#8722B2O3&#8722P2O5[J]. Chem Mater, 2007, 19(13): 3162-3170.

    [11] [11] LIU H, YOUNGMAN R E, KAPOOR S, et al. Nano-phase separation and structural ordering in silica-rich mixed network former glasses[J]. Phys Chem Chem Phys, 2018, 20(23): 15707-15717.

    [12] [12] SMEDSKJAER M M, MAURO J C, YUE Y Z. Cation diffusivity and the mixed network former effect in borosilicate glasses[J]. J Phys Chem B, 2015, 119(23): 7106-7115.

    [13] [13] DU T, LI S W, GANISETTI S, et al. Deciphering the controlling factors for phase transitions in zeolitic imidazolate frameworks[J]. Natl Sci Rev, 2024, 11(4): 1-13.

    [14] [14] BENNETT T D, YUE Y Z, LI P, et al. Melt-quenched glasses of metal-organic frameworks[J]. J Am Chem Soc, 2016, 138(10): 3484-3492.

    [15] [15] GE X, XU J, HU Q D, et al. Inhibiting effect of heterogeneous cations aggregation enhanced by oxygen deficiency on glass formation of BaTi2O5 melts[J]. J Am Ceram Soc, 2021, 104(12): 6207-6226.

    [16] [16] GE X, LAI P, SHI C, et al, Immiscibility in binary silicate liquids: Insight from ab initio molecular dynamics simulations[J]. Phys Rev B, 2024, 109, 174215.

    [17] [17] YEUNG H H M, SAPNIK A F, MASSINGBERD-MUNDY F, et al. Control of metal-organic framework crystallization by metastable intermediate pre-equilibrium species[J]. Angew Chem Int Ed, 2019, 58(2): 566-571.

    [18] [18] BROZEK C K, BELLAROSA L, SOEJIMA T, et al. Solvent-dependent cation exchange in metal-organic frameworks[J]. Chemistry, 2014, 20(23): 6871-6874.

    [19] [19] YU Y, QIAO A, BUMSTEAD A M, et al. Impact of 1-methylimidazole on crystal formation, phase transitions, and glass formation in a zeolitic imidazolate framework[J]. Cryst Growth Des, 2020, 20(10): 6528-6534.

    [20] [20] LEWIS A, BUTT F S, WEI X M, et al. Crystallization and phase selection of zeolitic imidazolate frameworks in aqueous cosolvent systems: The role and impacts of organic solvents[J]. Results Eng, 2023, 17: 100751.

    [21] [21] BARSZCZ B, HODOROWICZ S A, STADNICKA K, et al. A comparison of the coordination geometries of some 4-methylimidazole-5-carbaldehyde complexes with Zn(II), Cd(II) and Co(II) ions in the solid state and aqueous solution[J]. Polyhedron, 2005, 24(5): 627-637.

    [22] [22] SHILLITO G E, RAU S, KUPFER S. Plugging the 3MC sink in RuII-based photocatalysts[J]. ChemCatChem, 2023, 15(4): e202201489.

    [23] [23] BENNETT T D, TAN J C, YUE Y Z, et al. Hybrid glasses from strong and fragile metal-organic framework liquids[J]. Nat Commun, 2015, 6: 8079.

    [24] [24] PARK K S, NI Z, CT A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proc Natl Acad Sci USA, 2006, 103(27): 10186-10191.

    [25] [25] ADHIKARI P, XIONG M, LI N, et al. Structure and electronic properties of a continuous random network model of an amorphous zeolitic imidazolate framework (a-ZIF)[J]. J Phys Chem C, 2016, 120(28): 15362-15368.

    [26] [26] BANERJEE R, PHAN A, WANG B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319(5865): 939-943.

    [27] [27] XIONG M, ZHAO X J, YIN G C, et al. Unravelling the effects of linker substitution on structural, electronic and optical properties of amorphous zeolitic imidazolate frameworks-62 (a-ZIF-62) glasses: A DFT study[J]. RSC Adv, 2020, 10(24): 14013-14024.

    [28] [28] SMEDSKJAER M M, MAURO J C, YOUNGMAN R E, et al. Topological principles of borosilicate glass chemistry[J]. J Phys Chem B, 2011, 115(44): 12930-12946.

    [29] [29] YANG Y J, WILKINSON C J, LEE K H, et al. Prediction of the glass transition temperatures of zeolitic imidazolate glasses through topological constraint theory[J]. J Phys Chem Lett, 2018, 9(24): 6985-6990.

    [30] [30] YU Y T, WANG M Y, SMEDSKJAER M M, et al. Thermometer effect: Origin of the mixed alkali effect in glass relaxation[J]. Phys Rev Lett, 2017, 119(9): 095501.

    [31] [31] SHI R, TANAKA H. Distinct signature of local tetrahedral ordering in the scattering function of covalent liquids and glasses[J]. Sci Adv, 2019, 5(3): eaav3194.

    [32] [32] ZHOU C, STEPNIEWSKA M, LONGLEY L, et al. Thermodynamic features and enthalpy relaxation in a metal-organic framework glass[J]. Phys Chem Chem Phys, 2018, 20(27): 18291-18296.

    [33] [33] SALMON P S. Real space manifestation of the first sharp diffraction peak in the structure factor of liquid and glassy materials[J]. Proc R Soc Lond A, 1994, 445(1924): 351-365.

    [34] [34] TANAKA H, TONG H, SHI R, et al. Revealing key structural features hidden in liquids and glasses[J]. Nat Rev Phys, 2019, 1: 333-348

    Tools

    Get Citation

    Copy Citation Text

    DU Zijuan, GE Xuan, QIAO Ang, SHI Caijuan, DU Tao, YUE Yuanzheng, TAO Haizheng. Node Metal Mixing Effect on Glass Transition Temperature of Metal-Organic Framework Materials[J]. Journal of the Chinese Ceramic Society, 2024, 52(12): 3673

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 19, 2024

    Accepted: Jan. 2, 2025

    Published Online: Jan. 2, 2025

    The Author Email: Haizheng TAO (thz@whut.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240224

    Topics