Infrared and Laser Engineering, Volume. 51, Issue 12, 20220667(2022)

Research progress of barrier InAs/InAsSb type-II superlattice infrared detectors (invited)

Chunfang Zhang1,2, Yuan Liu1,2, Mingliang Gong1,2, Bingfeng Liu2,3, Ruixin Gong2,4, Jiabo Liu1,2, Heping An1,2, Dongliang Zhang1,2, Xiantong Zheng1,2, Lidan Lu1,2, Yulin Feng1,2, and Lianqing Zhu1,2
Author Affiliations
  • 1School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science & Technology University, Beijing 100096, China
  • 2Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing 100016, China
  • 3School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230002, China
  • 4School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130012, China
  • show less
    Figures & Tables(13)
    (a) Band structure of InAs/GaSb; (b) Band structure of InAs/InAsSb
    InAs/InAsSb T2SLs development roadmap
    Roadmap of the barrier structure development
    Schematic diagram of the nBn device structure. (a) Structure diagram of nBn detector structure; (b) Energy band diagram of nBn structure
    Schematic diagram of the pBn device structure. (a) Structure diagram of pBn detector structure; (b) Energy band diagram of pBn structure
    Energy band structure diagram of p-CBIRD
    Energy band structure diagram of pn-CBIRD
    Image taken with the CBIRD FPA of JPL[75, 77]
    Dark current change trend of MWIR InAs/InAsSb T2SLs[68, 72- 73, 82-88]
    Detectivity change trend of MWIR InAs/InAsSb T2SLs[68, 72- 73, 82-86]
    • Table 1. Comparison of advantages and disadvantages of InAs/GaSb and InAs/InAsSb superlattices

      View table
      View in Article

      Table 1. Comparison of advantages and disadvantages of InAs/GaSb and InAs/InAsSb superlattices

      InAs/InAsSb T2SLsInAs/GaSb T2SLs
      Longer minority carrier lifetimeHigher absorption coefficient
      AdvantagesSimpler epitaxy processGreater offset of conduction band and valence band
      Better defect toleranceLarger cut-off wavelength range
      Lower absorption coefficientShort minority carrier lifetime
      DisadvantagesLower vertical hole mobilityMore complicated epitaxy process
      Shorter carrier diffusion lengthIntrinsic defects of Ga atom
      Sb segregation
    • Table 2. Key performance comparison chart of barrier-type InAs/InAsSb T2SLs infrared detectors

      View table
      View in Article

      Table 2. Key performance comparison chart of barrier-type InAs/InAsSb T2SLs infrared detectors

      TimeStructureWavelength/ μm Detection rate/ cm· Hz1/2·W−1QEWorking temperature/K Dark current/ A·cm−2Research institutions Reference
      2018nBn5.42.53×101149.1%150~3×10−5JPL[68]
      2018nBn5.374.6×101152%1504.5×10−5JPL[82]
      201912.5622.6×10−5JPL[91]
      2019nBn4.61.4×10111501.6×10−4CQD[83]
      2019nBn5.556%1603.4×10−4Air Force Research Lab[90]
      2019nBn4.850%1505×10−6JPL[88]
      2020pBn4.47.1×101139%1501.16×10−5CQD[84]
      2020nBn51.82×101137.5%1501.55×10−4Kunming Institute of Physics[85]
      2020pBn4.84.43×101157.6%5.39×10−5Kunming Institute of Physics[72]
      2020double barrier4.56.9×101145%1501.21×10−5CQD[86]
      2020nBn3.359.12×101123.5%771.23×10−6CQD[92]
      2021XBn550%1504.5×10−5ANR[87]
      2021pn-CBIRD10.31.3×1011775.4×10−5JPL[75]
      2021nBn350%802×10−9Korea i3 system[93]
      2022pn-CBIRD13.353%606.6×10−5JPL[76]
      2022pBn5.01.2×101129%1501.2×10−4Northwestern University of China[73]
    • Table 3. Key performance comparison chart of barrier-type InAs/GaSb T2SLs infrared detectors

      View table
      View in Article

      Table 3. Key performance comparison chart of barrier-type InAs/GaSb T2SLs infrared detectors

      TimeStructureWavelength/ μm Detection rate/ cm·Hz1/2·W-1QEWorking temperature/K Dark current/ A·cm-2Research institutions Reference
      2008nBn4.82.8×101123%2503.1×10−6University of New Mexico[95]
      2012p-CBIRD11.51.1×101121%80JPL[96]
      2012pBiBn4.2/8.78.9×1012/7.9×101138%/23.5%771.6×10−7/ 1.42×10−5University of New Mexico[97]
      2014pMp4.91.2×101267%1501.2×10−5Northwestern University[100]
      2015nBn2.72.5×1010772.5×10−6Kunming Institute of Physics[99]
      2017pBn550%802×10−5University of New Mexico[102]
      2017pBp2.3/ 2.9/ 4.4 1×1011/ 6.3×1011/ 2×101120%/ 22%/ 34% 1505.5×10−8/ 1.8×10−6/ 8.7×10−5CQD[101]
      2018pBn4.550%804.7×10−6The Ohio State University[103]
      2019pBn6.47.6×1011772.9×10−5Shanghai University of Science and Technology [78]
      2020nBn5.62.5×1011771.44×10−5Shanghai University of Science and Technology [98]
      2021nBn5.32.6×1011773.5×10−3Korean Academy of Sciences[104]
      2022nBn10.4/ 12.2 1.7×1010/ 1.5×10109×10−4/ 2×10−2University of Science and Technology of China [105]
    Tools

    Get Citation

    Copy Citation Text

    Chunfang Zhang, Yuan Liu, Mingliang Gong, Bingfeng Liu, Ruixin Gong, Jiabo Liu, Heping An, Dongliang Zhang, Xiantong Zheng, Lidan Lu, Yulin Feng, Lianqing Zhu. Research progress of barrier InAs/InAsSb type-II superlattice infrared detectors (invited)[J]. Infrared and Laser Engineering, 2022, 51(12): 20220667

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Invited paper

    Received: Oct. 20, 2022

    Accepted: --

    Published Online: Jan. 10, 2023

    The Author Email:

    DOI:10.3788/IRLA20220667

    Topics