Acta Optica Sinica, Volume. 42, Issue 7, 0722001(2022)

Automatic Design Technology and Software of Dielectric Metalens

Pengfei Ba1,2, Qingzhi Li2, Jingjun Wu2, Jun Chen2, Feng Tang2、**, Shanjun Chen1、*, Xin Ye2, and Wanguo Zheng2
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, China
  • 2Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
  • show less
    References(32)

    [1] Cen C L, Zhang Y B, Liang C P et al. Numerical investigation of a tunable metamaterial perfect absorber consisting of two-intersecting graphene nanoring arrays[J]. Physics Letters A, 383, 3030-3035(2019).

    [2] Yi Z, Liang C P, Chen X F et al. Dual-band plasmonic perfect absorber based on graphene metamaterials for refractive index sensing application[J]. Micromachines, 10, 443(2019).

    [3] Li X, Chen L, Li Y et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2, e1601102(2016).

    [4] Ye X, Shao T, Sun L et al. Plasma-induced, self-masking, one-step approach to an ultrabroadband antireflective and superhydrophilic subwavelength nanostructured fused silica surface[J]. ACS Applied Materials & Interfaces, 10, 13851-13859(2018).

    [5] Wu J, Ye X, Sun L et al. Growth mechanism of one-step self-masking reactive-ion-etching (RIE) broadband antireflective and superhydrophilic structures induced by metal nanodots on fused silica[J]. Optics Express, 26, 1361-1374(2018).

    [6] Zhao W, Jiang H, Liu B et al. Dielectric Huygens’ metasurface for high-efficiency hologram operating in transmission mode[J]. Scientific Reports, 6, 30613(2016).

    [7] Yifat Y, Eitan M, Iluz Z et al. Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays[J]. Nano Letters, 14, 2485-2490(2014).

    [8] Zhou Y, Kravchenko I I, Wang H et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics[J]. Nano Letters, 18, 7529-7537(2018).

    [9] Chen X Z, Chen M, Mehmood M Q et al. Longitudinal multifoci metalens for circularly polarized light[J]. Advanced Optical Materials, 3, 1201-1206(2015).

    [10] Zhao Z, Pu M, Gao H et al. Multispectral optical metasurfaces enabled by achromatic phase transition[J]. Science Reports, 5, 15781(2015).

    [11] Chen X, Huang L, Mühlenbernd H et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 3, 1198(2012).

    [12] Walther B, Helgert C, Rockstuhl C et al. Spatial and spectral light shaping with metamaterials[J]. Advanced Materials, 24, 6300-6304(2012).

    [13] Zhang X, Jin J, Pu M et al. Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes[J]. Nanoscale, 9, 1409-1415(2017).

    [14] Huang L L, Chen X Z, Mühlenbernd H et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 4, 2808(2013).

    [15] Pang H, Gao H, Deng Q et al. Multi-focus plasmonic lens design based on holography[J]. Optics Express, 21, 18689-18696(2013).

    [16] Xiang M, Kuang D F, Gu P C et al. Multi-wavelength multifocal metasurface with polarization multiplexing[J]. Chinese Journal of Lasers, 47, 1113001(2020).

    [17] Zhu Q, Wang D, Zheng X et al. Optical lens design based on metallic nanoslits with variant widths[J]. Applied Optics, 50, 1879-1883(2011).

    [18] Zhu Q F, Ye J S, Wang D Y et al. Optimal design of SPP-based metallic nanoaperture optical elements by using Yang-Gu algorithm[J]. Optics Express, 19, 9512-9522(2011).

    [19] Berry M V. The adiabatic phase and Pancharatnam’s phase for polarized light[J]. Journal of Modern Optics, 34, 1401-1407(1987).

    [20] Pancharatnam S. Generalized theory of interference, and its applications[J]. Resonance, 18, 387-389(2013).

    [21] Jia S L, Wan X, Bao D et al. Independent controls of orthogonally polarized transmitted waves using a Huygens metasurface[J]. Laser & Photonics Reviews, 9, 545-553(2015).

    [22] Kuester E F, Mohamed M A, Piket-May M et al. Averaged transition conditions for electromagnetic fields at a metafilm[J]. IEEE Transactions on Antennas and Propagation, 51, 2641-2651(2003).

    [23] Wong J P S, Selvanayagam M, Eleftheriades G V. Polarization considerations for scalar Huygens metasurfaces and characterization for 2-D refraction[J]. IEEE Transactions on Microwave Theory and Techniques, 63, 913-924(2015).

    [24] Guo L J, Cheng X, Chou C F. Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching[J]. Nano Letters, 4, 69-73(2004).

    [25] Armani D, Liu C, Aluru N. Re-configurable fluid circuits by PDMS elastomer micromachining[C]//Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291), January 21-21, 1999, Orlando, FL, USA., 222-227(1999).

    [26] Zhu B O, Zhao J, Feng Y. Active impedance metasurface with full 360° reflection phase tuning[J]. Scientific Reports, 3, 3059(2013).

    [27] West P R, Stewart J L, Kildishev A V et al. All-dielectric subwavelength metasurface focusing lens[J]. Optics Express, 22, 26212-26221(2014).

    [28] Lalanne P, Astilean S, Chavel P et al. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings[J]. Optics Letters, 23, 1081-1083(1998).

    [29] Khorasaninejad M, Zhu A Y, Roques-Carmes C et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Letters, 16, 7229-7234(2016).

    [30] Zhao F, Chen X N, Wang D C. Metalens design and simulation for simultaneous focusing of orthogonal circularly polarized light[J]. Acta Optica Sinica, 40, 1024001(2020).

    [31] Hu Z, Xu T, Tang R et al. Geometric-phase metasurfaces: from physics to applications[J]. Laser & Optoelectronics Progress, 56, 202408(2019).

    [32] Shang S H, Tang F, Ye X et al. High-efficiency metasurfaces with 2π phase control based on aperiodic dielectric nanoarrays[J]. Nanomaterials, 10, 250(2020).

    Tools

    Get Citation

    Copy Citation Text

    Pengfei Ba, Qingzhi Li, Jingjun Wu, Jun Chen, Feng Tang, Shanjun Chen, Xin Ye, Wanguo Zheng. Automatic Design Technology and Software of Dielectric Metalens[J]. Acta Optica Sinica, 2022, 42(7): 0722001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Jul. 28, 2021

    Accepted: Oct. 15, 2021

    Published Online: Mar. 28, 2022

    The Author Email: Tang Feng (tangfengf3@caep.cn), Chen Shanjun (csj@yangtzeu.edu.cn)

    DOI:10.3788/AOS202242.0722001

    Topics