Infrared and Laser Engineering, Volume. 49, Issue 11, 20200284(2020)
Tracking of dense group targets based on motion grouping
[1] [1] Konstantinova P, Udvarev A, Semerdjiev T. A study of a target tracking algithm using global nearest neighb approach[C]Proceedings of the International Conference on Computer Systems Technologies, 2003.
[2] [2] Ekman M, Sviestins E, Sjoberg L. Particle filters f tracking closely spaced targets[C]IEEE International Conference on Infmation Fusion, 2007: 18.
[3] [3] Koch W. Experimental results on Bayesian MHT f maneuvering closelyspaced objects in a densely cluttered environment[C] Radar 97, 1997: 729733.
[5] [5] Swain A, Clark D. The singlegroup PHD filter: an an alytic solution[C]Infmation Fusion (FUSION), 2011 Proceedings of the 14th International Conference on. IEEE, 2011: 18.
[7] [7] Aro A, Epstein S, Kpan R. Mengeros: A crowd simulation tool f autonomous robot navigation[C]Proc AAAI Fall Symp, 2017: 123–125.
[8] [8] Lin T Y, Goyal P, Girshick R, et al. Focal loss f dense object detection[C]2017 IEEE International Conference on Computer Vision (ICCV), 2020.
[11] [11] Nie F, Wang X, Jdan M, et al. The constrained laplacian rank algithm f graphbased clustering[C]AAAI Conference on Artificial Intelligence, 2016: 1969–1976.
[12] [12] Zhou B, Tang X, Wang X. Coherent filtering: Detecting coherent motions from crowd clutters[C]European Conference on Computer Vision. Springer, Berlin, Heidelberg, 2012: 857871.
[13] [13] Shao J, Change Loy C, Wang X. Sceneindependent group profiling in crowd[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2014: 22192226.
Get Citation
Copy Citation Text
Lei Zhang, Shuai Zhu, Tianyu Liu, Yuehuan Wang. Tracking of dense group targets based on motion grouping[J]. Infrared and Laser Engineering, 2020, 49(11): 20200284
Category: Image processing
Received: Jul. 14, 2020
Accepted: --
Published Online: Jan. 4, 2021
The Author Email: