Photonics Research, Volume. 9, Issue 10, 1892(2021)

Very large group delay in VHF band using coupled high temperature superconducting resonators

Tianning Zheng1, Bin Wei1,3、*, Fuchuan Lei2,4、*, and Bisong Cao1
Author Affiliations
  • 1Department of Physics, State Key Laboratory Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
  • 2Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
  • 3e-mail: weibin@tsinghua.edu.cn
  • 4e-mail: fuchuan@chalmers.se
  • show less
    References(43)

    [1] S. E. Harris, J. E. Field, A. Imamoğlu. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett., 64, 1107-1110(1990).

    [2] K.-J. Boller, A. Imamoğlu, S. E. Harris. Observation of electromagnetically induced transparency. Phys. Rev. Lett., 66, 2593-2596(1991).

    [3] A. M. Akulshin, S. Barreiro, A. Lezama. Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor. Phys. Rev. A, 57, 2996-3002(1998).

    [4] M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, M. D. Lukin. Electromagnetically induced transparency with tunable single-photon pulses. Nature, 438, 837-841(2005).

    [5] M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boas, G. Rempe. Electromagnetically induced transparency with single atoms in a cavity. Nature, 465, 755-758(2010).

    [6] R. Röhlsberger, H.-C. Wille, K. Schlage, B. Sahoo. Electromagnetically induced transparency with resonant nuclei in a cavity. Nature, 482, 199-203(2012).

    [7] L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi. Light speed reduction to 17 meters per second in ultracold atomic gases. Nature, 397, 594-598(1999).

    [8] G. Morigi, J. Eschner, C. H. Keitel. Ground state laser cooling using electromagnetically induced transparency. Phys. Rev. Lett., 85, 4458-4461(2000).

    [9] D. A. Braje, V. Balić, S. Goda, G. Y. Yin, S. E. Harris. Frequency mixing using electromagnetically induced transparency in cold atoms. Phys. Rev. Lett., 93, 183601(2004).

    [10] N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin. Metamaterial analog of electromagnetically induced transparency. Phys. Rev. Lett., 101, 253903(2008).

    [11] P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett., 102, 053901(2009).

    [12] L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, C. M. Soukoulis. Large group delay in a microwave metamaterial analog of electromagnetically induced transparency. Appl. Phys. Lett., 97, 241904(2010).

    [13] J. Zhai, J. Zhou, L. Zhang, W. Hong. Behavioral modeling of power amplifiers with dynamic fuzzy neural networks. IEEE Microw. Wireless Compon. Lett., 20, 528-530(2010).

    [14] J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, W. Zhang. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun., 3, 1151(2012).

    [15] P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, C. M. Soukoulis. Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation. Phys. Rev. Lett., 109, 187401(2012).

    [16] Z. Vafapour. Slow light modulator using semiconductor metamaterial. Proc. SPIE, 10535, 105352A(2018).

    [17] R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, F. Zhang. Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators. Photon. Res., 7, 955-960(2019).

    [18] Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett., 96, 123901(2006).

    [19] Q. Xu, P. Dong, M. Lipson. Breaking the delay-bandwidth limit in a photonic structure. Nat. Phys., 3, 406-410(2007).

    [20] M. F. Limonov, M. V. Rybin, A. N. Poddubny, Y. S. Kivshar. Fano resonances in photonics. Nat. Photonics, 11, 543-554(2017).

    [21] N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater., 8, 758-762(2009).

    [22] R. Taubert, M. Hentschel, J. Kästel, H. Giessen. Classical analog of electromagnetically induced absorption in plasmonics. Nano Lett., 12, 1367-1371(2012).

    [23] G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, E. A. Shaner. Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals. Nat. Photonics, 7, 925-930(2013).

    [24] C. W. Hsu, B. G. DeLacy, S. G. Johnson, J. D. Joannopoulos, M. Soljačić. Theoretical criteria for scattering dark states in nanostructured particles. Nano Lett., 14, 2783-2788(2014).

    [25] A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, J. S. Tsai. Electromagnetically induced transparency on a single artificial atom. Phys. Rev. Lett., 104, 193601(2010).

    [26] P. M. Anisimov, J. P. Dowling, B. C. Sanders. Objectively discerning Autler-Townes splitting from electromagnetically induced transparency. Phys. Rev. Lett., 107, 163604(2011).

    [27] J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, P. Wu. Superconducting terahertz metamaterials mimicking electromagnetically induced transparency. Appl. Phys. Lett., 99, 161113(2011).

    [28] C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, C. M. Soukoulis. Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial. Phys. Rev. Lett., 107, 043901(2011).

    [29] X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, T. J. Kippenberg. Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics. Nat. Phys., 9, 179-184(2013).

    [30] O. Limaj, F. Giorgianni, A. Di Gaspare, V. Giliberti, G. De Marzi, P. Roy, M. Ortolani, X. Xi, D. Cunnane, S. Lupi. Superconductivity-induced transparency in terahertz metamaterials. ACS Photon., 1, 570-575(2014).

    [31] C. Zhang, J. Wu, B. Jin, X. Jia, L. Kang, W. Xu, H. Wang, J. Chen, M. Tonouchi, P. Wu. Tunable electromagnetically induced transparency from a superconducting terahertz metamaterial. Appl. Phys. Lett., 110, 241105(2017).

    [32] J. Joo, J. Bourassa, A. Blais, B. C. Sanders. Electromagnetically induced transparency with amplification in superconducting circuits. Phys. Rev. Lett., 105, 073601(2010).

    [33] Z. Vafapour, M. Dutta, M. A. Stroscio. Sensing, switching and modulating applications of a superconducting THz metamaterial. IEEE Sens. J., 21, 15187-15195(2021).

    [34] A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter. Electromagnetically induced transparency and slow light with optomechanics. Nature, 472, 69-73(2011).

    [35] H. Xiong, Y. Wu. Fundamentals and applications of optomechanically induced transparency. Appl. Phys. Rev., 5, 031305(2018).

    [36] D. U. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, R. W. Boyd. Coupled-resonator-induced transparency. Phys. Rev. A, 69, 063804(2004).

    [37] K. Totsuka, N. Kobayashi, M. Tomita. Slow light in coupled-resonator-induced transparency. Phys. Rev. Lett., 98, 213904(2007).

    [38] F.-C. Lei, M. Gao, C. Du, Q.-L. Jing, G.-L. Long. Three-pathway electromagnetically induced transparency in coupled-cavity optomechanical system. Opt. Express, 23, 11508-11517(2015).

    [39] C. Wang, X. Jiang, G. Zhao, M. Zhang, C. W. Hsu, B. Peng, A. D. Stone, L. Jiang, L. Yang. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys., 16, 334-340(2020).

    [40] B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, H. Schmidt. Slow light on a chip via atomic quantum state control. Nat. Photonics, 4, 776-779(2010).

    [41] S. D. Berger. The spectrum of a digital radio frequency memory linear range gate stealer electronic attack signal. Proceedings of the 2001 IEEE Radar Conference, 27-30(2001).

    [42] M. Amin, R. Ramzan, O. Siddiqui. Slow wave applications of electromagnetically induced transparency in microstrip resonator. Sci. Rep., 8, 2357(2018).

    [43] B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, L. Yang. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun., 5, 5082(2014).

    Tools

    Get Citation

    Copy Citation Text

    Tianning Zheng, Bin Wei, Fuchuan Lei, Bisong Cao. Very large group delay in VHF band using coupled high temperature superconducting resonators[J]. Photonics Research, 2021, 9(10): 1892

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Apr. 28, 2021

    Accepted: Jul. 25, 2021

    Published Online: Sep. 7, 2021

    The Author Email: Bin Wei (weibin@tsinghua.edu.cn), Fuchuan Lei (fuchuan@chalmers.se)

    DOI:10.1364/PRJ.430185

    Topics