Journal of the Chinese Ceramic Society, Volume. 50, Issue 1, 212(2022)
Damage and Creep Behavior in Planar Solid Oxide Fuel Cell by Modeling of Multiphysics Coupled
[2] [2] FAN P F, LI G J, ZENG Y K, et al. Numerical study on thermal stresses of a planar solid oxide fuel cell[J]. Int J Therm Sci, 2014, 77(3): 1-10.
[3] [3] LAURENCIN J, MOREL B, BULTEL Y, et al. Thermo-mechanical model of solid oxide fuel cell fed with methane[J]. Fuel Cells, 2010, 6(1): 64-70.
[4] [4] CHOU Y S, STEVENSON J W, GOW R N. Novel alkaline earth silicate sealing glass for SOFC: Part II. Sealing and interfacial microstructure[J]. J Power Sources, 2007, 170(2): 395-400.
[5] [5] CLAGUE R, MARQUIS A J, BRANDON N P. Finite element and analytical stress analysis of a solid oxide fuel cell[J]. J Power Sources, 2012, 210: 2-10.
[6] [6] LIU W N, SUN X, KHALEEL M A. Effect of creep of ferritic interconnect on long-term performance of solid oxide fuel cell stacks[J]. Fuel Cells, 2010, 10(4): 703-717.
[7] [7] JIANG W C, ZHANG Y C, LUO Y, et al. Creep analysis of solid oxide fuel cell with bonded compliant seal design[J]. J Power Sources, 2013, 243: 913-918.
[8] [8] JIANG W C, LUO Y, WEI Z Q, et al. Effect of tube radius on creep for an anode supported tubular solid oxide fuel cell: Experimental and finite element simulation[J]. Int J Hydrogen Energ, 2017, 42(36): 23198-23206.
[9] [9] GRECO F, FRANDSEN H L, NAKAJO A, et al. Modelling the impact of creep on the probability of failure of a solid oxide fuel cell stack[J]. J Eur Ceram Soc, 2014, 34(11): 2695-2704.
[10] [10] NAKAJO A, MUELLER F, BROUWER J, et al. Mechanical reliability and durability of SOFC stacks. Part II: Modelling of mechanical failures during ageing and cycling[J]. Int J Hydrogen Energ, 2012, 37(11): 9269-9286.
[11] [11] ZHANG Y C, LU M J , JIANG W C, et al. Effect of the geometrical size on time dependent failure probability of the solid oxide fuel cell[J]. Int J Hydrogen Energ, 2019, 44(21): 11033-11046.
[12] [12] WANG Y, JIANG W C, SONG M , et al. Effect of frame material on the creep of solid oxide fuel cell[J]. Int J Hydrogen Energ, 2019, 44(36): 20323-20335.
[13] [13] JIANG T L, CHEN M H. Thermal-stress analyses of an operating planar solid oxide fuel cell with the bonded compliant seal design[J]. Int J Hydrogen Energ, 2009, 34(19): 8223-8234.
[14] [14] AKHTAR N, DECENT S P, LOGHIN D, et al. A three-dimensional numerical model of a single-chamber solid oxide fuel cell[J]. Int J Hydrogen Energ, 2009, 34(20): 8645-8663.
[16] [16] XU M, LI T S, YANG M, et al. Modeling of an anode supported solid oxide fuel cell focusing on thermal stresses[J]. Int J Hydrogen Energ, 2016, 41(33): 14927-14940.
[18] [18] WEN J F, TU S T, GAO X L, et. al. Simulations of creep crack growth in 316 stainless steel using a novel creep-damage model[J]. Eng Fract Mech, 2013, 98: 169-184.
[19] [19] ZHANG Y C, ZHAO H Q, JIANG W C, et al. Time dependent failure probability estimation of the solid oxide fuel cell by a creep-damage related Weibull distribution model[J]. Int J Hydrogen Energ, 2018, 43: 13532-13542.
[20] [20] LUO Y, JIANG W C, ZHANG Q, et al. Effects of anode porosity on thermal stress and failure probability of planar solid oxide fuel cell with bonded compliant seal[J]. Int J Hydrogen Energ , 2016, 41(18): 7464-7474.
[21] [21] CHANG H T, LIN C K, LIU C K. Effects of crystallization on the high-temperature mechanical properties of a glass sealant for solid oxide fuel cell[J]. J Power Sources, 2010, 195(10): 3159-3165.
[22] [22] SAANOUNI K, CHABOCHE J L, BATHIAS C. On the creep crack growth prediction by a local approach[J]. Eng Fract Mech, 1986, 25(5): 677-691.
Get Citation
Copy Citation Text
SONG Ming, MA Shuai, DU Chuansheng, WANG Bingying, JIANG Wenchun. Damage and Creep Behavior in Planar Solid Oxide Fuel Cell by Modeling of Multiphysics Coupled[J]. Journal of the Chinese Ceramic Society, 2022, 50(1): 212
Category:
Received: Apr. 30, 2021
Accepted: --
Published Online: Nov. 14, 2022
The Author Email: