Journal of Applied Optics, Volume. 43, Issue 3, 444(2022)
Improved ViBe algorithm based on adaptive threshold and dynamic update factor
[4] [4] SHAHBAZ A, HARIYONO J, JO K H. Evaluation of background subtraction algithms f video surveillance[C]2015 21st KeaJapan Joint Wkshop on Frontiers of Computer Vision. USA: IEEE, 2015: 14.
[5] N SINGLA. Motion detection base on frame difference method. International Journal of Information & Computation Technology, 4, 1559-1565(2014).
[6] X LIU, G ZHAO, J YAO, et al. Background subtraction based on low-rank and structured sparse decomposition. IEEE Transactions on Image Processing, 24, 2502-2514(2015).
[12] [12] ELGAMMAL A M , HARWOOD D, DAVIS L S. Nonparametric model f background subtraction[C]Proceeding of the European Conference on Computer Vision. Dublin: Springer, 2000: 751767.
[13] [13] BARNICH O, DROOGENBROECK M V. ViBE: A powerful rom technique to estimate the background in video sequences[C]Proceedings of 2009 IEEE International Conference on Acoustics, Speech Signal Processing. USA: IEEE, 2009: 945948.
[16] [16] GOYETTE N, JODOIN P M, F PIKLI, et al. Changedetection. : a new change detection benchmark dataset[C]Proceedings of IEEE Computer Society Conference on Computer Vision Pattern Recognition Wkshops. USA: IEEE, 2012: 18.
[17] Ling LIU, Guohua CHAI, Zhong QU. Moving target detection based on improved ghost suppression and adaptive visual background extraction. Journal of Central South University, 28, 747-759(2021).
Get Citation
Copy Citation Text
Wei CHEN, Yu LIU, Hongtao LI, Jing SUN, Ning YAN. Improved ViBe algorithm based on adaptive threshold and dynamic update factor[J]. Journal of Applied Optics, 2022, 43(3): 444
Category: OE INFORMATION ACQUISITION AND PROCESSING
Received: Oct. 18, 2021
Accepted: --
Published Online: Jun. 7, 2022
The Author Email: