Chinese Journal of Quantum Electronics, Volume. 42, Issue 1, 123(2025)

Quantum convolutional neural network based on particle swarm optimization algorithm

ZHANG Jiawen1、*, CAI Binbin1,2, and LIN Song1
Author Affiliations
  • 1College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350007, China
  • 2Digital Fujian Internet-of-Things Laboratory of Environmental Monitoring, Fuzhou 350007, China
  • show less
    References(30)

    [1] Mitarai K, Kitagawa M, Fujii K. Quantum analog-digital conversion[J]. Physical Review A, 99, 012301(2019).

    [2] Zang Y M, Zhu S C, Wei Z H et al. A pseudo color coding method for quantum image[J]. Chinese Journal of Quantum Electronics, 39, 343-353(2022).

    [3] LeCun Y, Bottou L, Bengio Y et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 86, 2278-2324(1998).

    [4] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 25(2012).

    [6] Szegedy C, Liu W, Jia Y et al. Going deeper with convolutions[C], 1-9(2015).

    [7] He K, Zhang X, Ren S et al. Deep residual learning for image recognition[C], 770-778(2016).

    [8] Li Y C, Zhou R G, Xu R Q et al. A quantum deep convolutional neural network for image recognition[J]. Quantum Science and Technology, 5, 044003(2020).

    [9] Chen G, Chen Q, Long S et al. Quantum convolutional neural network for image classification[J]. Pattern Analysis and Applications, 26, 655-667(2023).

    [10] Pesah A, Cerezo M, Wang S et al. Absence of barren plateaus in quantum convolutional neural networks[J]. Physical Review X, 11, 041011(2021).

    [11] Cong I, Choi S, Lukin M D. Quantum convolutional neural networks[J]. Nature Physics, 15, 1273-1278(2019).

    [12] Henderson M, Shakya S, Pradhan S et al. Quanvolutional neural networks: Powering image recognition with quantum circuits[J]. Quantum Machine Intelligence, 2, 2(2020).

    [13] Hur T, Kim L, Park D K. Quantum convolutional neural network for classical data classification[J]. Quantum Machine Intelligence, 4, 3(2022).

    [14] Liu J, Lim K H, Wood K L et al. Hybrid quantum-classical convolutional neural networks[J]. Science China Physics, Mechanics & Astronomy, 64, 290311(2021).

    [15] Gong L H, Pei J J, Zhang T F et al. Quantum convolutional neural network based on variational quantum circuits[J]. Optics Communications, 550, 129993(2024).

    [16] Lü Y X, Gao Q, Lü J H et al. A quantum convolutional neural network for image classification[C], 6329-6334(2021).

    [17] Cerezo M, Arrasmith A, Babbush R et al. Variational quantum algorithms[J]. Nature Reviews Physics, 3, 625-644(2021).

    [18] Huang H L, Xu X Y, Guo C et al. Near-term quantum computing techniques: Variational quantum algorithms, error mitigation, circuit compilation, benchmarking and classical simulation[J]. Science China Physics, Mechanics & Astronomy, 66, 250302(2023).

    [19] Bharti K, Cervera-Lierta A, Kyaw T H et al. Noisy intermediate-scale quantum algorithms[J]. Reviews of Modern Physics, 94, 015004(2022).

    [20] Sharma K, Khatri S, Cerezo M et al. Noise resilience of variational quantum compiling[J]. New Journal of Physics, 22, 043006(2020).

    [21] Cincio L, Rudinger K, Sarovar M et al. Machine learning of noise-resilient quantum circuits[J]. PRX Quantum, 2, 010324(2021).

    [22] Zhang Y H, Zheng P L, Zhang Y et al. Topological quantum compiling with reinforcement learning[J]. Physical Review Letters, 125, 170501(2020).

    [23] He Z, Li L, Zheng S et al. Variational quantum compiling with double Q-learning[J]. New Journal of Physics, 23, 033002(2021).

    [25] Ostaszewski M, Trenkwalder L M, Masarczyk W et al. Reinforcement learning for optimization of variational quantum circuit architectures[J]. Advances in Neural Information Processing Systems, 34, 18182-18194(2021).

    [26] Kennedy J, Eberhart R. Particle swarm optimization[C](1995).

    [27] Benedetti M, Lloyd E, Sack S et al. Parameterized quantum circuits as machine learning models[J]. Quantum Science and Technology, 4, 043001(2019).

    [29] Bergholm V, Izaac J, Schuld M et al. Pennylane: Automatic differentiation of hybrid quantum-classical computations[J]. arxiv preprint arxiv, 2018.

    [30] Nesterov Y E. A method of solving a convex programming problem with convergence rate O(k2)[C], 269, 543-547(1983).

    Tools

    Get Citation

    Copy Citation Text

    Jiawen ZHANG, Binbin CAI, Song LIN. Quantum convolutional neural network based on particle swarm optimization algorithm[J]. Chinese Journal of Quantum Electronics, 2025, 42(1): 123

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Computing

    Received: Feb. 28, 2024

    Accepted: --

    Published Online: Mar. 13, 2025

    The Author Email: ZHANG Jiawen (gamung123@163.com)

    DOI:10.3969/j.issn.1007-5461.2025.01.012

    Topics