Infrared and Laser Engineering, Volume. 50, Issue 12, 20210657(2021)
Research on the effect of noise-containing signal light on correlated imaging in complex environment (Invited)
[1] Klyshko D N. Two-photon light: Influence of filtration and a new possible EPR experiment[J]. Physics Letters A, 128, 133-137(1988).
[2] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429-R3432(1995).
[3] Strekalov D V, Sergienko A V, Klyshko D N, et al. Observation of two-photon "ghost" interference and diffraction[J]. Physical Review Letters, 74, 3600-3603(1995).
[4] Pittman T B, Strekalov D V, Klyshko D N, et al. Two-photon geometric optics[J]. Physical Review A, 53, 2804-2815(1996).
[5] Ribeiro P H S, Barbosa G A. Direct and ghost interference in double-slit experiments with coincidence measurements[J]. Physical Review A, 54, 3489-3492(1996).
[6] Barbosa G A. Quantum images in double-slit experiments with spontaneous down-conversion light[J]. Physical Review A, 54, 4473-4478(1996).
[7] Pittman T B, Strekalov D V, Migdall A, et al. Can two-photon interference be considered the interference of two photons[J]. Physical Review Letters, 77, 1917-1920(1996).
[8] Fonseca E J S, Monken C H, Pádua S. Measurement of the de Broglie wavelength of a multiphoton wave packet[J]. Physical Review Letters, 82, 2868-2871(1999).
[9] Fonseca E J S, Ribeiro P H S, Pádua S, et al. Quantum interference by a nonlocal double slit[J]. Physical Review A, 60, 1530-1533(1999).
[10] D’Angelo M, Chekhova M V, Shih Y H. Two-photon diffraction and quantum lithography[J]. Physical Review Letters, 87, 013602(2001).
[11] Abouraddy A F, Saleh B E A, Sergienko A V, et al. Role of entanglement in two-photon imaging[J]. Physical Review Letters, 87, 123602(2001).
[12] Bennink R S, Bentley S J, Boyd R W. "Two-photon" coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002).
[13] Cheng J, Han S S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 92, 093903(2004).
[14] Gatti A, Brambilla E, Bache M, et al. Ghost imaging with thermal light: Comparing entanglement and classical correlation[J]. Physical Review Letters, 93, 093602(2004).
[15] Gatti A, Brambilla E, Bache M, et al. Correlated imaging, quantum and classical[J]. Physical Review A, 70, 235-238(2004).
[16] Valencia A, Scarcelli G, D’Angelo M, et al. Two-photon imaging with thermal light[J]. Physical Review Letters, 94, 063601(2005).
[17] Zhang D, Zhai Y H, Wu L A, et al. Correlated two-photon imaging with true thermal light[J]. Optics Letters, 30, 2354-2356(2005).
[18] Cao D Z, Xiong J, Wang K G. Geometrical optics in correlated imaging systems[J]. Physical Review A, 71, 13801(2005).
[19] Xiong J, Cao D Z, Huang F, et al. Experimental observation of classical subwavelength interference with a pseudothermal light source[J]. Physical Review Letters, 94, 173601(2005).
[20] Cai Y J, Zhu S Y. Ghost imaging with incoherent and partially coherent light radiation[J]. Physical Review E, 71, 056607(2005).
[21] Ferri F, Magatti D, Gatti A, et al. High-resolution ghost image and ghost diffraction experiments with thermal light[J]. Physical Review Letters, 94, 183602(2005).
[22] D’Angelo M, Valencia A, Rubin M H, et al. Resolution of quantum and classical ghost imaging[J]. Physical Review A, 72, 013810(2005).
[23] Zhai Y H, Chen X H, Zhang D, et al. Two-photon interference with true thermal light[J]. Physical Review A, 72, 043805(2005).
[24] Scarcelli G, Berardi V, Shih Y H. Phase-conjugate mirror via two-photon thermal light imaging[J]. Applied Physics Letters, 88, 061106(2006).
[25] Basano L, Ottonello P. Experiment in lensless ghost imaging with thermal light[J]. Applied Physics Letters, 89, 061106(2006).
[26] Cheng J, Han S S, Yan Y J. Resolution and noise in ghost imaging with classical thermal light[J]. Chinese Physics, 15, 2002-2006(2006).
[27] Zhang M H, Wei Q, Shen X, et al. Lensless Fourier-transform ghost imaging with classical incoherent light[J]. Physical Review A, 75, 021803(2007).
[28] Liu H L, Cheng J, Han S S. Cross spectral purity and its influence on ghost imaging experiments[J]. Optics Communications, 273, 50-53(2007).
[29] Ou L H, Kuang L M. Ghost imaging with third-order correlated thermal light[J]. Journal of Physics B, 40, 1833-1844(2007).
[30] Crosby S, Castelletto S, Aruldoss C, et al. Modelling of classical ghost images obtained using scattered light[J]. New Journal of Physics, 9, 285(2007).
[31] Liu H L, Shen X, Zhu D M, et al. Fourier-transform ghost imaging with pure far-field correlated thermal light[J]. Physical Review A, 76, 053808(2007).
[32] Liu H L, Cheng J, Han S S. Ghost imaging in Fourier space[J]. Journal of Applied Physics, 102, 103102(2007).
[33] Erkmen B I, Shapiro J H. Unified theory of ghost imaging with Gaussian-State light[J]. Physical Review A, 77, 043809(2008).
[34] Meyers R, Deacon, K S, Shih Y H. Ghost-imaging experiment by measuring reflected photons[J]. Physical Review A, 77, 041801(2008).
[35] Liu H L, Han S S. Spatial longitudinal coherence length of a thermal source and its influence on lensless ghost imaging[J]. Optics Letters, 33, 824-826(2008).
[36] Ferri F, Magatti D, Sala V G, et al. Longitudinal coherence in thermal ghost imaging[J]. Applied Physics Letters, 92, 261109(2008).
[37] Zhang Y T, He C J, Li H G, et al. Novel ghost imaging method for a pure phase object[J]. Chinese Physics Letters, 25, 2481-2484(2008).
[38] Cheng J. Transfer functions in lensless ghost-imaging systems[J]. Physical Review A, 78, 043823(2008).
[39] Ying G R, Shen Q W, Han S S. A two-step phase-retrieval method in Fourier-transform ghost imaging[J]. Optics Communications, 281, 5130-5132(2008).
[40] Shen X, Bai Y F, Qin T, et al. Experimental investigation of quality of lensless ghost imaging with pseudo-thermal light[J]. Chinese Physics Letters, 25, 3968-3971(2008).
[41] Gong W L, Zhang P L, Shen X, et al. Ghost “pinhole” imaging in Fraunhofer region[J]. Applied Physics Letters, 95, 071110(2009).
[42] Zhao C Q, Gong W L, Chen M L, et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 101, 141123(2012).
[43] Liu X F, Yao X R, Lan R M, et al. Edge detection based on gradient ghost imaging[J]. Optics Express, 23, 33802-33811(2015).
[44] Gong W L, Zhao C Q, Yu H, et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific Reports, 6, 26133(2016).
[45] Paniagua-Diaz A M, Starshynov I, Fayard N, et al. Blind ghost imaging[J]. Optica, 6, 460-464(2019).
[46] Sun B Q, Jiang S, Ma Y Y, et al. Application and development of single pixel imaging in the special wavebands and 3D imaging[J]. Infrared and Laser Engineering, 49, 0303016(2020).
[47] Shi F, Lu T X, Yang S N, et al. Target recognition method based on single-pixel imaging system and deep learning in the noisy environment[J]. Infrared and Laser Engineering, 49, 20200010(2020).
[48] Gong W L. Sub-Nyquist ghost imaging by optimizing point spread function[J]. Optics Express, 29, 17591-17601(2020).
[49] Huang X W, Nan S Q, Tan W, et al. Ghost imaging influenced by a supersonic wind-induced random environment[J]. Optics Letters, 46, 1009-1012(2021).
[50] Bai Y F, Han S S. Ghost imaging with thermal light by third-order correlation[J]. Physical Review A, 76, 043828(2007).
[51] Cao D Z, Xiong J, Zhang S H, et al. Enhancing visibility and resolution in
[52] Kuplicki K, Chan K W C. High-order ghost imaging using non-Rayleigh speckle sources[J]. Optics Express, 24, 26766-26776(2016).
[53] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 95, 131110(2009).
[54] Huang H Y, Zhou C, Tian T, et al. High-quality compressive ghost imaging[J]. Optics Communications, 412, 60-65(2018).
[55] Shi X H, Huang X W, Nan S Q, et al. Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method[J]. Laser Physics Letters, 15, 045204(2018).
[56] Zhao Z D, Yang Z H, Li G L. Sub-Nyquist single-pixel imaging by optimizing sampling basis[J]. Optics and Precision Engineering, 29, 1008-1013(2021).
[57] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).
[58] Clemente P, Duran, V, Torres-Company V, et al. Optical encryption based on computational ghost imaging[J]. Optics Letters, 35, 2391-2393(2010).
[59] Shi F, Yu D Q, Lin Z T, et al. Depth estimation in computational ghost imaging system using autofocusing method with adaptive focus window[J]. Infrared and Laser Engineering, 49, 0303020(2020).
[60] Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging[J]. Physical Review Letters, 104, 253603(2010).
[61] Li M F, Zhang Y R, Luo K H, et al. Time correspondence differential ghost imaging[J]. Physical Review A, 87, 033813(2013).
[62] Sun B Q, Welsh S S, Edgar M P, et al. Normalized ghost imaging[J]. Optics Express, 20, 16892-16901(2012).
[63] Sun S, Liu W T, Gu J H, et al. Ghost imaging normalized by second-order coherence[J]. Optics Letters, 44, 5993-5996(2019).
[64] Zhang C, Guo S X, Cao J S, et al. Object reconstitution using pseudo-inverse for ghost imaging[J]. Optics Express, 22, 30063-30073(2014).
[65] Gong W L. High-resolution pseudo-inverse ghost imaging[J]. Photonic Research, 3, 234-237(2017).
[66] Xu Y K, Liu W T, Zhang E F, et al. Is ghost imaging intrinsically more powerful against scattering?[J]. Optics Express, 23, 32993-33000(2015).
[67] Deng C J, Gong W L, Han S S. Pulse-compression ghost imaging lidar via coherent detection[J]. Optics Express, 24, 25983-25994(2016).
[68] Wu Z W, Qiu X D, Chen L X. Current status and prospect for correlated imaging technique[J]. Laser & Optoelectronics Progress, 57, 060001(2020).
[69] Wu Y B, Yang Z H, Tang Z L. Experiment study on anti-disturbance ability of underwater ghost imaging[J]. Laser & Optoelectronics Progress, 58, 0611002(2021).
[70] Liu W T, Sun S, Hu H K, et al. Progress and prospect for ghost imaging of moving objects[J]. Laser & Optoelectronics Progress, 58, 1011001(2021).
[71] Zeng X, Bai Y F, Shi X H, et al. The influence of the positive and negative defocusing on lensless ghost imaging[J]. Optics Communications, 382, 415-420(2017).
[72] Wang C F, Zhang D W, Bai Y F, et al. Ghost imaging for a reflected object with a rough surface[J]. Physical Review A, 82, 063814(2010).
[73] Nan S Q, Bai Y F, Shi X H, et al. Experimental investigation of ghost imaging of reflective objects with different surface roughness[J]. Photonic Research, 5, 372-376(2017).
[74] Gong W L, Han S S. Correlated imaging in scattering media[J]. Optics Letters, 36, 394-396(2011).
[75] [75] Zhang Y Z. Experimental study of crelated imaging algithm design [D]. Shanghai: Shanghai Jiao Tong University, 2014: 34–40. (in Chinese)
[76] Fu Q, Bai Y F, Huang X W, et al. Positive influence of the scattering medium on reflective ghost imaging[J]. Photonic Research, 7, 1468-1472(2019).
[77] Li J H, Yang D Y, Luo B, et al. Image quality recovery in binary ghost imaging by adding random noise[J]. Optics Letters, 42, 1640-1643(2017).
[78] Cheng J. Ghost imaging through turbulent atmosphere[J]. Optics Express, 17, 7916-7921(2009).
[79] Hardy N D, Shapiro J H. Reflective ghost imaging through turbulence[J]. Physical Review A, 84, 063824(2011).
[80] Luo C L, Lei P, Li Z L, et al. Long-distance ghost imaging with an almost non-diffracting Lorentz source in atmospheric turbulence[J]. Laser Physics Letters, 15, 085201(2018).
[81] Tan W, Huang X W, Nan S Q, et al. Effect of the collection range of a bucket detector on ghost imaging through turbulent atmosphere[J]. Journal of the Optical Society of America A, 36, 1261-1266(2019).
[82] Zhang Y X, Wang Y G. Computational lensless ghost imaging in a slant path non-Kolmogorov turbulent atmosphere[J]. Optik, 123, 1360-1363(2012).
[83] Wang X, Zhang Y X. Lens ghost imaging in a non-Kolmogorov slant turbulence atmosphere[J]. Optik, 124, 4378-4382(2013).
[84] Tan W, Huang X W, Nan S Q, et al. Ghost imaging through inhomogeneous turbulent atmosphere along an uplink path and a downlink path[J]. OSA Continuum, 3, 1222-1231(2020).
[85] Chan K W C, O’Sullivan M N, Boyd R W. Optimization of thermal ghost imaging: High-order correlations vs. background subtraction[J]. Optics Express, 18, 5562-5573(2010).
[86] Shi X H, Li H X, Bai Y F, et al. Negative influence of detector noise on ghost imaging based on the photon counting technique at low light levels[J]. Applied Optics, 56, 7320-7326(2017).
[87] Xie P Y, Shi X H, Huang X W, et al. Binary detection in ghost imaging with preserved grayscale[J]. European Physical Journal D, 73, 102(2019).
[88] Andrews L C, Phillips R L, Hopen C Y, et al. Theory of optical scintillation[J]. Journal of the Optical Society of America A, 16, 1417-1429(1999).
[89] [89] rews L C, Phillips R L. Laser Beam Propagation Through Rom Media[M]. 2nd Edition. Bellingham: SPIE, 2005.
Get Citation
Copy Citation Text
Wei Tan, Xianwei Huang, Teng Jiang, Qin Fu, Suqin Nan, Xuanpengfan Zou, Yanfeng Bai, Xiquan Fu. Research on the effect of noise-containing signal light on correlated imaging in complex environment (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210657
Category: Special issue—Single-pixel imaging
Received: Sep. 14, 2021
Accepted: --
Published Online: Feb. 9, 2022
The Author Email: Xiquan Fu (fuxq@hnu.edu.cn)