Laser & Optoelectronics Progress, Volume. 60, Issue 13, 1316014(2023)

Recent Developments in Elastocaloric Cooling

Danyang Feng1,2,3, Yicheng Xiao1,2,3, and Zunfeng Liu1,2,3、*
Author Affiliations
  • 1State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
  • 2Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
  • 3Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin, 300071, China
  • show less
    References(96)

    [1] Velders G J M, Fahey D W, Daniel J S et al. The large contribution of projected HFC emissions to future climate forcing[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 10949-10954(2009).

    [2] Senthilkumar A, Anderson A, Praveen R. Prospective of nanolubricants and nano refrigerants on energy saving in vapour compression refrigeration system-a review[J]. Materials Today: Proceedings, 33, 886-889(2020).

    [3] Maier L M, Corhan P, Barcza A et al. Active magnetocaloric heat pipes provide enhanced specific power of caloric refrigeration[J]. Communications Physics, 3, 186(2020).

    [4] Moya X, Kar-Narayan S, Mathur N D. Caloric materials near ferroic phase transitions[J]. Nature Materials, 13, 439-450(2014).

    [5] Crossley S, Mathur N D, Moya X. New developments in caloric materials for cooling applications[J]. AIP Advances, 5, 067153(2015).

    [6] Liu J, Gottschall T, Skokov K P et al. Giant magnetocaloric effect driven by structural transitions[J]. Nature Materials, 11, 620-626(2012).

    [7] Shi J, Han D, Li Z et al. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration[J]. Joule, 3, 1200-1225(2019).

    [8] Ma R J, Zhang Z Y, Tong K et al. Highly efficient electrocaloric cooling with electrostatic actuation[J]. Science, 357, 1130-1134(2017).

    [9] Defay E, Faye R, Despesse G et al. Enhanced electrocaloric efficiency via energy recovery[J]. Nature Communications, 9, 1827(2018).

    [10] Xie Z, Sebald G, Guyomar D. Comparison of elastocaloric effect of natural rubber with other caloric effects on different-scale cooling application cases[J]. Applied Thermal Engineering, 111, 914-926(2017).

    [11] Gschneidner K,, Pecharsky V J I J O R.. Thirty years of near room temperature magnetic cooling: where we are today and future prospects[J]. International Journal of Refrigeration, 31, 945-961(2008).

    [12] Franco V, Blázquez J S, Ipus J J et al. Magnetocaloric effect: from materials research to refrigeration devices[J]. Progress in Materials Science, 93, 112-232(2018).

    [13] Gatti J, Muller C, Vasile C et al. Magnetic heat pumps - configurable hydraulic distribution for a magnetic cooling system[J]. International Journal of Refrigeration, 37, 165-175(2014).

    [14] Ram N R, Prakash M, Naresh U et al. Review on magnetocaloric effect and materials[J]. Journal of Superconductivity and Novel Magnetism, 31, 1971-1979(2018).

    [15] Pecharsky V K, Gschneidner K A,. Giant magnetocaloric effect in Gd5(Si2Ge2)[J]. Physical Review Letters, 78, 4494-4497(1997).

    [16] Li B, Kawakita Y, Ohira-Kawamura S et al. Colossal barocaloric effects in plastic crystals[J]. Nature, 567, 506-510(2019).

    [17] EERE Publication and Product Library. Energy savings potential and RD & D opportunities for non-vapor-compression HVAC technologies[R], 199(2014).

    [18] Kitanovski A, Plaznik U, Tomc U et al. Present and future caloric refrigeration and heat-pump technologies[J]. International Journal of Refrigeration, 57, 288-298(2015).

    [19] Holzapfel G A, Simo J C. Entropy elasticity of isotropic rubber-like solids at finite strains[J]. Computer Methods in Applied Mechanics and Engineering, 132, 17-44(1996).

    [20] Wang W J, Meng Z G, Shen G K. Research progress and application analysis of new solid-state refrigeration technology[C], 1927-1931(2020).

    [21] Greibich F, Schwödiauer R, Mao G et al. Elastocaloric heat pump with specific cooling power of 20.9 W·g-1 exploiting snap-through instability and strain-induced crystallization[J]. Nature Energy, 6, 260-267(2021).

    [22] Qu Y H. Study on magnetic structure phase transformation regulation and thermal effect of Ni-Mn-based magnetic shape memory alloy[D], 1-129(2019).

    [23] Rodriguez C, Brown L C. The thermal effect due to stress-induced martensite formation in Β-CuAlNi single crystals[J]. Metallurgical Transactions A, 11, 147-150(1980).

    [24] Quarini J, Prince A. Solid state refrigeration: cooling and refrigeration using crystalline phase changes in metal alloys[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 218, 1175-1179(2004).

    [25] Ossmer H, Chluba C, Gueltig M et al. Local evolution of the elastocaloric effect in TiNi-based films[J]. Shape Memory and Superelasticity, 1, 142-152(2015).

    [26] Ossmer H, Lambrecht F, Gültig M et al. Evolution of temperature profiles in TiNi films for elastocaloric cooling[J]. Acta Materialia, 81, 9-20(2014).

    [27] Gough J J M O T L, Manchester P S O. A description of a property of Caoutchouc, or Indian rubber[J]. Memories of the Literacy and Philosophical Society of Manchester, 1, 288-295(1805).

    [28] Joule J P J. V. On some thermo-dynamic properties of solids[J]. Philosophical Transactions of the Royal Society of London, 149, 91-131(1859).

    [29] Guyomar D, Li Y, Sebald G et al. Elastocaloric modeling of natural rubber[J]. Applied Thermal Engineering, 57, 33-38(2013).

    [30] Cazorla C. Novel mechanocaloric materials for solid-state cooling applications[J]. Applied Physics Reviews, 6, 041316(2019).

    [31] Otsuka K, Kakeshita T. Science and technology of shape-memory alloys: new developments[J]. MRS Bulletin, 27, 91-100(2002).

    [32] Mañosa L, Planes A. Materials with giant mechanocaloric effects: cooling by strength[J]. Advanced Materials, 29, 1603607(2017).

    [33] Mohd Jani J, Leary M, Subic A et al. A review of shape memory alloy research, applications and opportunities[J]. Materials & Design (1980-2015), 56, 1078-1113(2014).

    [34] Kirsch S M, Welsch F, Michaelis N et al. NiTi-based elastocaloric cooling on the macroscale: from basic concepts to realization[J]. Energy Technology, 6, 1567-1587(2018).

    [35] Nargatti K, Ahankari S. Advances in enhancing structural and functional fatigue resistance of superelastic NiTi shape memory alloy: a review[J]. Journal of Intelligent Material Systems and Structures, 33, 503-531(2022).

    [36] Cui J, Wu Y M, Muehlbauer J et al. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires[J]. Applied Physics Letters, 101, 073904(2012).

    [37] Tušek J, Engelbrecht K, Mikkelsen L P et al. Elastocaloric effect of Ni-Ti wire for application in a cooling device[J]. Journal of Applied Physics, 117, 124901(2015).

    [38] Schmidt M, Ullrich J, Wieczorek A et al. Thermal stabilization of NiTiCuV shape memory alloys: observations during elastocaloric training[J]. Shape Memory and Superelasticity, 1, 132-141(2015).

    [39] Wang R, Fang S L, Xiao Y C et al. Torsional refrigeration by twisted, coiled, and supercoiled fibers[J]. Science, 366, 216-221(2019).

    [40] Frenzel J, Wieczorek A, Opahle I et al. On the effect of alloy composition on martensite start temperatures and latent heats in Ni-Ti-based shape memory alloys[J]. Acta Materialia, 90, 213-231(2015).

    [41] Chen H, Xiao F, Liang X et al. Giant elastocaloric effect with wide temperature window in an Al-doped nanocrystalline Ti-Ni-Cu shape memory alloy[J]. Acta Materialia, 177, 169-177(2019).

    [42] Chen H, Xiao F, Liang X et al. Stable and large superelasticity and elastocaloric effect in nanocrystalline Ti-44Ni-5Cu-1Al (at%) alloy[J]. Acta Materialia, 158, 330-339(2018).

    [43] Greninger A B, Mooradian V G. Strain transformation in metastable beta copper-zinc and copper-tin alloys[J]. Transactions of the American Institute of Mining and Metallurgical Engineers, 128, 337-369(1938).

    [44] Bonnot E, Romero R, Mañosa L et al. Elastocaloric effect associated with the martensitic transition in shape-memory alloys[J]. Physical Review Letters, 100, 125901(2008).

    [45] Qian S X, Geng Y L, Wang Y et al. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 374, 20150309(2016).

    [46] Mañosa L, Jarque-Farnos S, Vives E et al. Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys[J]. Applied Physics Letters, 103, 211904(2013).

    [47] Vives E, Burrows S, Edwards R S et al. Temperature contour maps at the strain-induced martensitic transition of a Cu-Zn-Al shape-memory single crystal[J]. Applied Physics Letters, 98, 011902(2011).

    [48] Mañosa L, Planes A, Vives E et al. The use of shape-memory alloys for mechanical refrigeration[J]. Functional Materials Letters, 2, 73-78(2009).

    [49] Tušek J, Engelbrecht K, Millán-Solsona R et al. The elastocaloric effect: a way to cool efficiently[J]. Advanced Energy Materials, 5, 1500361(2015).

    [50] Chen Y, Zhang X X, Dunand D C et al. Shape memory and superelasticity in polycrystalline Cu-Al-Ni microwires[J]. Applied Physics Letters, 95, 171906(2009).

    [51] Picornell C, Pons J, Cesari E. Stress-temperature relationship in Cu-Al-Ni single crystals in compression mode[J]. Materials Science and Engineering: A, 378, 222-226(2004).

    [52] Xu S, Huang H Y, Xie J X et al. Giant elastocaloric effect covering wide temperature range in columnar-grained Cu71.5Al17.5Mn11 shape memory alloy[J]. APL Materials, 4, 106106(2016).

    [53] Liu J L, Huang H Y, Xie J X. Superelastic anisotropy characteristics of columnar-grained Cu-Al-Mn shape memory alloys and its potential applications[J]. Materials & Design, 85, 211-220(2015).

    [54] Yuan B, Zhu X J, Zhang X X et al. Elastocaloric effect with small hysteresis in bamboo-grained Cu-Al-Mn microwires[J]. Journal of Materials Science, 54, 9613-9621(2019).

    [55] Yuan B, Qian M, Zhang X et al. Enhanced cyclic stability of elastocaloric effect in oligocrystalline Cu-Al-Mn microwires via cold-drawing[J]. International Journal of Refrigeration, 114, 54-61(2020).

    [56] Chen J, Lei L, Fang G. Elastocaloric cooling of shape memory alloys: a review[J]. Materials Today Communications, 28, 102706(2021).

    [57] Wayman C J S M. On memory effects related to martensitic transformations and observations in β-brass and Fe3Pt[J]. Scripta Metallurgica, 5, 489-492(1971).

    [58] Nikitin S A, Myalikgulyev G, Annaorazov M P et al. Giant elastocaloric effect in FeRh alloy[J]. Physics Letters A, 171, 234-236(1992).

    [59] Annaorazov M P, Nikitin S A, Tyurin A L et al. Heat pump cycles based on the AF-F transition in Fe-Rh alloys induced by tensile stress[J]. International Journal of Refrigeration, 25, 1034-1042(2002).

    [60] Xiao F, Fukuda T, Kakeshita T. Significant elastocaloric effect in a Fe-31.2Pd (at. %) single crystal[J]. Applied Physics Letters, 102, 161914(2013).

    [61] Shen Q, Zhao D, Sun W et al. Microstructure, martensitic transformation and elastocaloric effect in Pd-In-Fe polycrystalline shape memory alloys[J]. Intermetallics, 100, 27-31(2018).

    [62] Omori T, Abe S, Tanaka Y et al. Thermoelastic martensitic transformation and superelasticity in Fe-Ni-Co-Al-Nb-B polycrystalline alloy[J]. Scripta Materialia, 69, 812-815(2013).

    [63] Soto-Parra D E, Vives E, González-Alonso D et al. Stress- and magnetic field-induced entropy changes in Fe-doped Ni-Mn-Ga shape-memory alloys[J]. Applied Physics Letters, 96, 071912(2010).

    [64] Castillo-Villa P O, Soto-Parra D E, Matutes-Aquino J A et al. Caloric effects induced by magnetic and mechanical fields in a Ni50Mn25–xGa25Cox magnetic shape memory alloy[J]. Physical Review B, 83, 174109(2011).

    [65] Wang J, Yu Q, Xu K et al. Large room-temperature elastocaloric effect of Ni57Mn18Ga21In4 alloy undergoing a magnetostructural coupling transition[J]. Scripta Materialia, 130, 148-151(2017).

    [66] Li Y, Sun W, Zhao D et al. An 8 K elastocaloric temperature change induced by 1.3% transformation strain in Ni44Mn45-xSn11Cux alloys[J]. Scripta Materialia, 130, 278-282(2017).

    [67] Pataky G J, Ertekin E, Sehitoglu H. Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl[J]. Acta Materialia, 96, 420-427(2015).

    [68] Soto-Parra D, Vives E, Mañosa L et al. Elastocaloric effect in Ti-Ni shape-memory wires associated with the B2 ↔ B19' and B2 ↔ R structural transitions[J]. Applied Physics Letters, 108, 071902(2016).

    [69] Bechtold C, Chluba C, Lima de Miranda R et al. High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films[J]. Applied Physics Letters, 101, 091903(2012).

    [70] Xiao F, Fukuda T, Kakeshita T et al. Elastocaloric effect by a weak first-order transformation associated with lattice softening in an Fe-31.2Pd (at.%) alloy[J]. Acta Materialia, 87, 8-14(2015).

    [71] Xu Y, Lu B F, Sun W et al. Large and reversible elastocaloric effect in dual-phase Ni54Fe19Ga27 superelastic alloys[J]. Applied Physics Letters, 106, 201903(2015).

    [72] Huang Y J, Hu Q D, Bruno N M et al. Giant elastocaloric effect in directionally solidified Ni-Mn-In magnetic shape memory alloy[J]. Scripta Materialia, 105, 42-45(2015).

    [73] Castillo-Villa P O, Mañosa L, Planes A et al. Elastocaloric and magnetocaloric effects in Ni-Mn-Sn(Cu) shape-memory alloy[J]. Journal of Applied Physics, 113, 053506(2013).

    [74] Lu B, Zhang P, Xu Y et al. Elastocaloric effect in Ni45Mn36.4In13.6Co5 metamagnetic shape memory alloys under mechanical cycling[J]. Materials Letters, 148, 110-113(2015).

    [75] Lu B F, Xiao F, Yan A R et al. Elastocaloric effect in a textured polycrystalline Ni-Mn-In-Co metamagnetic shape memory alloy[J]. Applied Physics Letters, 105, 161905(2014).

    [76] Sakata A, Suzuki N, Higashiura Y et al. Measurement of the mechanocaloric effect in rubber[J]. Journal of Thermal Analysis and Calorimetry, 113, 1555-1563(2013).

    [77] Xie Z J, Sebald G, Guyomar D. Comparison of direct and indirect measurement of the elastocaloric effect in natural rubber[J]. Applied Physics Letters, 108, 041901(2016).

    [78] Zhang S X, Yang Q L, Li C J et al. Solid-state cooling by elastocaloric polymer with uniform chain-lengths[J]. Nature Communications, 13, 9(2022).

    [79] Morozov E V, Kuchin D S, Koledov V V et al. Elastocaloric effect in rubber on exposure to a periodic tensile force[J]. Technical Physics, 61, 1679-1683(2016).

    [80] Xie Z J, Sebald G, Guyomar D. Elastocaloric effect dependence on pre-elongation in natural rubber[J]. Applied Physics Letters, 107, 081905(2015).

    [81] Yoshida Y, Yuse K R, Guyomar D et al. Elastocaloric effect in poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer[J]. Applied Physics Letters, 108, 242904(2016).

    [82] Roland C M, Garrett J T, Casalini R et al. Mechanical and electromechanical properties of vinylidene fluoride terpolymers[J]. Chemistry of Materials, 16, 857-861(2004).

    [83] Patel S, Chauhan A, Vaish R et al. Elastocaloric and barocaloric effects in polyvinylidene di-fluoride-based polymers[J]. Applied Physics Letters, 108, 072903(2016).

    [84] Rodriquez E L, Filisko F E. Thermoelastic temperature changes in poly(methyl methacrylate) at high hydrostatic pressure: experimental[J]. Journal of Applied Physics, 53, 6536-6540(1982).

    [85] Wang R, Zhou X, Wang W et al. Twist-based cooling of polyvinylidene difluoride for mechanothermochromic fibers[J]. Chemical Engineering Journal, 417, 128060(2021).

    [86] Banks R. Energy conversion system[P].

    [87] Johnson A D. Memory alloy heat engine and method of operation[P].

    [89] Qian S, Wu Y, Ling J et al. Design, development and testing of a compressive thermoelastic cooling system[C](2015).

    [90] Tušek J, Engelbrecht K, Eriksen D et al. A regenerative elastocaloric heat pump[J]. Nature Energy, 1, 16134(2016).

    [91] Engelbrecht K, Tušek J, Eriksen D et al. A regenerative elastocaloric device: experimental results[J]. Journal of Physics D: Applied Physics, 50, 424006(2017).

    [92] Snodgrass R, Erickson D. A multistage elastocaloric refrigerator and heat pump with 28 K temperature span[J]. Scientific Reports, 9, 18532(2019).

    [93] Bachmann N, Fitger A, Maier L M et al. Long-term stable compressive elastocaloric cooling system with latent heat transfer[J]. Communications Physics, 4, 194(2021).

    [94] Ossmer H, Wendler F, Gueltig M et al. Energy-efficient miniature-scale heat pumping based on shape memory alloys[J]. Smart Materials and Structures, 25, 085037(2016).

    [95] Schmidt M, Schütze A, Seelecke S. Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes[J]. International Journal of Refrigeration, 54, 88-97(2015).

    [96] Sharar D J, Radice J, Warzoha R et al. Low-force elastocaloric refrigeration via bending[J]. Applied Physics Letters, 118, 184103(2021).

    Tools

    Get Citation

    Copy Citation Text

    Danyang Feng, Yicheng Xiao, Zunfeng Liu. Recent Developments in Elastocaloric Cooling[J]. Laser & Optoelectronics Progress, 2023, 60(13): 1316014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Mar. 21, 2023

    Accepted: May. 18, 2023

    Published Online: Jul. 14, 2023

    The Author Email: Liu Zunfeng (liuzunfeng@nankai.edu.cn)

    DOI:10.3788/LOP230910

    Topics