Optics and Precision Engineering, Volume. 11, Issue 2, 181(2003)
[in Chinese]
[2] [2] CHETWYND D G. Applications of linear programming to engineering metrology[A].Pro Inst Mech Eng[C].London 1985,199(B2): 93-100.
[3] [3] SAMUEL G L. SHUNMUGAN M S. Evaluation of circularity from coordinate and form data using computational geometric techniques[J].Precision Engineering,2000,24: 251-263.
[4] [4] SHUNMUGAN M S. On Assessment of geometric errors[J]. Int J Product Res. 1986,24(2): 413-425.
[6] [6] BOURDET P, CLEMENT A. A Study of optimal criteria identification based on the small displacement screw model[J]. Ann CIRP, 1988, 37:503-6.
[7] [7] MURTHY T S R. A Comparison of different algorithm for circularity evaluation[J]. Prec Eng, 1986,8:19-23.
[8] [8] WEBER T. A unified approach to form error evaluation[J]. Precision Engineering, 2002,26(3):269-278.
[9] [9] LAI K W, WANG, J W. A computational geometric approach to geometric tolerance[A]. Proceedings of the 16th North American Manufacturing Research Conference[C]. University of Illinois, 1988.376-79.
[10] [10] LE V B, LEE D T. Out-of roundness problem revisited[J]. IEEE Trans Pattern Anal Machine Intell, 1991,13:217-23.
[11] [11] ROY U, ZHANG X. Establishment of a pair of concentric circles with the minimal radial separation for assessing roundness error[J]. Comp Aided Design, 1992,24:161-168.
[12] [12] HUANG J P. An exact solution for the roundness evaluation problems[J]. Prec Eng, 1999,23:2-8.
[13] [13] TSUKADA T,KANADA T,OKUDA K. An evaluation of roundness from minimum zone center by means of an optimization technique[J]. Bull Japan Soc Prec Eng.1984,18: 317-322.
[14] [14] JYWE W Y, LIU C H, CHEN C K. The min-max problem for evaluating the form Error of a circle, measurement[J].elsevier science1999, 26:273-282.
[15] [15] HUANG J P. A new strategy for circularity problems[J]. Prec Eng, 2001, 25:301-308.
Get Citation
Copy Citation Text
[in Chinese], [in Chinese]. [J]. Optics and Precision Engineering, 2003, 11(2): 181