Journal of Innovative Optical Health Sciences, Volume. 3, Issue 4, 235(2010)

A NOVEL TIME-SHARED FLUOROMETER GIVES THE MITOCHONDRIAL REDOX STATE AS THE RATIO OF TWO COMPONENTS OF THE RESPIRATORY CHAIN OF THE ANIMAL AND HUMAN BUCCAL CAVITY WITH QUANTITATIVE MEASURES OF THE REDOX ENERGY STATE

BRITTON CHANCE1,*... SHOKO NIOKA1, A. QUO1 and JENQ-RUEY HORNG2 |Show fewer author(s)
Author Affiliations
  • 1University of Pennsylvania Philadelphia, PA 19104, USA
  • 2South Taiwan University 1 Nantai Road, Yong Kang, Tainan 71005, Taiwan
  • show less
    References(43)

    [1] [1] S. McGee, J. Mirkovic, V. Mardirossian, A. Elackattu, C. C. Yu, S. Kabani, G. Gallagher, R. Pistey, L. Galindo, K. Badizadegan, Z. Wang, R. Dasari, M. S. Feld, G. Grillone, “Model-based spectroscopic analysis of the oral cavity: Impact of anatomy,” J. Biomed. Opt. 13(6), 064034 (2008).

    [2] [2] W. Zheng, Y. Wu, D. L. Li, J. Y. Q., “Autofluorescence of epithelial tissue: Single photon versus two-photon excitations,” Biomed. Opt. 13, 15410– 208 (2008).

    [3] [3] K. A. Kasischke, H. D. Vishwasrao, P. J. Fisher, W. R. Zipfel, W. W. Webb, “Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis,” Science 305(5680), 99–103 (2004).

    [4] [4] B. Chance, G. Williams, “Respiratory enzymes in oxidative phosphorylation. VI. The effects of adenosine diphosphate on azide-treated mitochondria,” J. Biol. Chem. 221(1), 477–489 (1956).

    [5] [5] S. Nioka, K. McCully, G. McClellan, J. Patk, B. Chance, “Oxygen transport and intracellular bioenergetics on stimulated cat skeletal muscle,” Adv. Exp. Med. Biol. 510, 267–272 (2003).

    [6] [6] B. Yerby, R. Deacon, V. Beaulieu, J. Liang, J. Gao, D. Laurent, “Insulin-stimulated mitochondrial adenosine triphosphate synthesis is blunted in skeletal muscles of high fat fed rats,” Metabolism 57(11), 1584–1590 (2008).

    [7] [7] M. A. Abdul-Ghani, R. A. DeFronzo, “Mitochondrial dysfunction, insulin resistance, and type 2 diabetes mellitus,” Curr. Diab. Rep. 8(3), 173–178 (2008).

    [8] [8] M. A. Abdul-Ghani, F. L. Muller, Y. Liu, A. O. Chavez, B. Balas, P. Zuo, Z. Chang, D. Tripathy, R. Jani, M. Molina-Carrion, A. Monroy, F. Folli, R. H. Van, R. A. DeFronzo, “Deleterious action of FA metabolites on ATP synthesis: Possible link between lipotoxicity, mitochondrial dysfunction, and insulin resistance,” Am. J. Physiol. Endocrinol. Metab. 295, E678–85 (2008).

    [9] [9] M. Bassami, S. Ahmadizad, D. Doran, D. P. MacLaren, “Effects of exercise intensity and duration on fat metabolism in trained and untrained older males,” Eur. J. Appl. Physiol. 101(4), 525–532 (2007).

    [10] [10] S. T. Henderson, “Ketone bodies as a therapeutic for Alzheimer’s disease,” Neurotherapeutics 5(3), 470– 480 (2008).

    [11] [11] C. M. Studzinski, W. A. MacKay, T. L. Beckett, S. T. Henderson, M. P. Murphy, P. G. Sullivan, W. M. Burnham, “Induction of ketosis may improve mitochondrial function and decrease steady-state amyloid-beta precursor protein (APP) levels in the aged dog,” Brain Res. 1226, 209–217 (2008).

    [12] [12] M. A. Puchowicz, J. L. Zechel, J. Valerio, D. S. Emancipator, K. Xu, S. Pundik, J. C. LaManna, “Lust, W. D. Neuroprotection in diet-induced ketotic rat brain after focal ischemia,” J. Cereb. Blood Flow Metab. 28(12), 1907–1916 (2008).

    [13] [13] W. T. Plunet, F. Streijger, C. K. Lam, J. H. Lee, J. Liu,W. Tetzlaff, “Dietary restriction started after spinal cord injury improves functional recovery,” Exp. Neurol. 213, 28–35 (2008).

    [14] [14] A. L. Hartman,M. Lyle,M. A. Rogawski,M. Gasior, “Efficacy of the ketogenic diet in the 6-Hz seizure test,” Epilepsia. 49(2), 334–339 (2008).

    [15] [15] L. T. Zhang, Y. M. Yao, J. Q. Lu, X. J. Yan, Y. Yu, Z. Y. Sheng, “Sodium butyrate prevents lethality of severe sepsis in rats,” Shock. 27(6), 672–677 (2007).

    [16] [16] N. Grinberg, S. Elazar, I. Rosenshine, N. Y. Shpigel, “Beta-hydroxybutyrate abrogates formation of bovine neutrophil extracellular traps and bactericidal activity against mammary pathogenic Escherichia coli,” Infect. Immun. 76, 2802–2807 (2008).

    [17] [17] T. Feldkamp, A. Kribben, N. F. Roeser, R. A. Senter, S. Kemner, M. A. Venkatachalam, I. Nissim, J.M.Weinberg, “Preservation of Complex I function during hypoxia-reoxygenation-induced mitochondrial injury in proximal tubules,” Am. J. Physiol. Renal. Physiol. 286, F749–F759 (2004).

    [18] [18] R. L. Veech, J. W. R. Lawson, N. W. Cornell, H. A. Krebs, “Cytosolic phosphorylation potential,” J. Biol. Chem. 254, 6538–6547 (1979).

    [19] [19] B. Chance, J. R. Williamson, D. Jamieson, B. Schoener, “Properties of reduced pyridine nucleotide fluorescence of the isolated and in vivo rat heart,” Biochem. Zeit. 341, 357–377 (1965).

    [20] [20] B. Chance, B. Schoener, “A correlation of absorption and fluorescence changes in ischemia of the rat liver, in vivo,” Biochem. Zeit. 341, 340–345 (1965).

    [21] [21] B. Chance, B. Schoener, F. Schindler, “The intracellular oxidation-reduction state,” In Oxygen in the Animal Organism (Dickens, F. N. ed.), Pergammon Press, London, pp. 367–388 (1964).

    [22] [22] B. Chance, B. Schoener, R. Oshino, F. Itsak, Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254(11), 4764–4771 (1979).

    [23] [23] B. Quistorff, B. Chance, A. Hunding, “An experimental model of the Krogh Tissue Cylinder: Two dimensional quantitation of the oxygen gradient. In Oxygen Transport to Tissue — III (Silver, I. E., Bucher, H., eds.),” Plenum Publishing Corp, NY, pp. 127–133 (1978).

    [24] [24] H. N. Xu, B. Wu, S. Nioka, B. Chance, L. Z. Li, “Calibration of CCD-based redox imaging for biological tissues,” Proc. SPIE 7262, 72622F (2009).

    [25] [25] H. N. Xu, B. Wu, S. Nioka, B. Chance, L. Z. Li, “Calibration of redox scanning for tissue samples,” Proc. SPIE 7174, 71742F (2009).

    [26] [26] K. Sato, Y. Kashiwaya, C. A. Keon, N. Tsuchiya, M. T. King, G. K. Radda, B. Chance, K. Clarke, R. L. Veech, “Insulin, ketone bodies, and mitochondrial energy transduction,” FASEB J. 9, 651–658 (1995).

    [27] [27] J. V. Rocheleau, W. S. Head, D. W. Piston, “Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response,” J. Biol. Chem. 79, 31780–7 (2004).

    [28] [28] N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Warren, S. Thomsen, E. Silva, R. Richards- Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Natl. Acad. Sci. USA 91, 10193–7 (1994).

    [29] [29] I. Georgakoudi, B. C. Jacobson, M. G. M¨uller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62(3), 682–687 (2002).

    [30] [30] B. Chance, “The kinetics of flavoprotein and pyridine nucleotide oxidation in cardiac mitochondria in the presence of calcium,” FEBS Lett. 26(1), 315–319 (1972).

    [31] [31] J. V. Rocheleau, W. S. Head, D. W. Piston, “Quantitative NAD(P)H/flavoprotein auto-fluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response,” J. Biol. Chem. 279(30), 31780–7 (2004).

    [32] [32] B. Chance, “Enzymes in action in living cells: The steady state of reduced pyridine nucleotide,” The Harvey Lectures Series, New York Academic Press, Inc., pp. 145–175 (1955).

    [33] [33] E. C. Slater, “Keilin, cytochrome, and the respiratory chain,” J. Biol. Chem. 278, 16455–16461 (2003).

    [34] [34] O. Warburg, W. Christian, Bio. Chem. Zeit. 287, 291–328 (1936).

    [35] [35] A. Mayevsky, B. Chance, “Oxidation-reduction states of NADH in vivo: From animals to clinical use,” Mitochondrion. 7(5), 330–9 (2007).

    [36] [36] B. Chance, G. Williams, “Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization,” J. Biol. Chem. 217(1), 383–393 (1955).

    [37] [37] B. Chance, G. Williams, “Respiratory enzymes in oxidative phosphorylation. II. Difference spectra,” J. Biol. Chem. 217(1), 395–407 (1955).

    [38] [38] B. Chance, G. Williams, “Respiratory enzymes in oxidative phosphorylation. III. The steady state,” J. Biol. Chem. 217(1), 409–427 (1955).

    [39] [39] B. Chance, G. Williams, “Respiratory enzymes in oxidative phosphorylation. IV. The respiratory chain,” J. Biol. Chem. 217(1), 429–438 (1955).

    [40] [40] B. Chance, M. T. Dait, C. Chang, T. Hamaoka, F. Hagerman, “Recovery from exercise-induced desaturation in the quadriceps muscles of elite competitive rowers,” Am. J. Physiol. 262, C766–C775 (1992).

    [41] [41] B. Chance, H. Baltscheffsky, “Respiratory enzymes in oxidative phosphorylation. VII. Binding of intramitochondrial reduced pyridine nucleotide,” J. Biol. Chem. 233(3), 736–739 (1958).

    [42] [42] B. Chance, G. Hollunger, “Inhibition of electron and energy transfer in mitochondria. IV. Inhibition of energy-linked diphosphopyridine nucleotide reduction by uncoupling agents,” J. Biol. Chem. 278, 445–448 (1963).

    [43] [43] B. Chance, “The energy-linked reaction of calcium with mitochondria,” J. Biol. Chem. 240(6), 2729– 2748 (1965).

    Tools

    Get Citation

    Copy Citation Text

    BRITTON CHANCE, SHOKO NIOKA, A. QUO, JENQ-RUEY HORNG. A NOVEL TIME-SHARED FLUOROMETER GIVES THE MITOCHONDRIAL REDOX STATE AS THE RATIO OF TWO COMPONENTS OF THE RESPIRATORY CHAIN OF THE ANIMAL AND HUMAN BUCCAL CAVITY WITH QUANTITATIVE MEASURES OF THE REDOX ENERGY STATE[J]. Journal of Innovative Optical Health Sciences, 2010, 3(4): 235

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: --

    Accepted: --

    Published Online: Jan. 10, 2019

    The Author Email: CHANCE BRITTON (Chance@mail.med.upenn.edu)

    DOI:10.1142/s1793545810001106

    Topics