Laser & Optoelectronics Progress, Volume. 57, Issue 4, 041016(2020)

Plant Image Recognition with Complex Background Based on Effective Region Screening

Xiaoyu Song1、**, Liting Jin1、*, Yang Zhao2, Yue Sun1, and Tong Liu1
Author Affiliations
  • 1School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
  • 2Department of Information Engineering, Longqiao College of Lanzhou University of Finance and Economics, Lanzhou, Gansu 730101, China
  • show less
    Figures & Tables(12)
    Structure of CNN
    Principle diagram of Mask R-CNN effective region screening
    Partial data display of open dataset. (a) Dataset partial pictures of Oxford 102 Flowers; (b) dataset partial pictures of Flavia
    Number of different types of plants in GLT datasets
    Flow chart of MRC-GoogleNet model
    Plant image recognition model based on effective region screening
    Accuracy versus Epoch. (a) AlexNet model; (b) GoogleNet model; (c) MRC-GoogleNet model
    Loss value versus Epoch. (a) AlexNet model; (b) GoogleNet model; (c) MRC-GoogleNet model
    • Table 1. Parameters of screening model CNN

      View table

      Table 1. Parameters of screening model CNN

      Network layerInputFilterStrideOutput
      Input32×32×132×32×1
      Conv 132×32×15×5×16128×28×6
      Max Pool 128×28×62×2214×14×6
      Conv 214×14×65×5×16110×10×16
      Max Pool 210×10×162×225×5×16
      FC15×5×16120
      FC284
      FC33
    • Table 2. Training parameters of GoogleNet model

      View table

      Table 2. Training parameters of GoogleNet model

      ParameterValue
      Initial learning rate(α)0.001
      Rate of decline in learning rate(β)0.96
      Weight decay0.0002
      Momentum0.9
      Batch size16
      Number of iterations for learning rate reduction20000
    • Table 3. Comparison results of model accuracy

      View table

      Table 3. Comparison results of model accuracy

      ModelTraining time /sAccuracy /%
      AlexNet648277.85
      GoogleNet937184.32
      MRC-GoogleNet1298695.21
    • Table 4. Recognition accuracy of different plant species

      View table

      Table 4. Recognition accuracy of different plant species

      Plant speciesAlexNetGoogleNetMRC-GoogleNet
      Trifolium pratense0.7620.8290.948
      Dandelion0.7930.8570.935
      Hydrocleys nymphoides0.8370.8910.986
      Viola philippica0.8240.8870.925
      Datura stramonium0.8080.8750.939
      Portulaca oleracea0.7390.8050.943
      Nomocharis pardanthina0.8470.9040.978
      Clerodendrum thomsoniae0.7450.8080.897
      Uncarina grandidieri0.7730.8590.954
      Scabiosa comosa0.7590.8190.899
      Arctium lappa0.7490.8140.958
      Chelidonium majus0.7570.8290.947
      Trientalis europaea0.7950.8630.894
      Bellis perennis0.8010.8690.976
      Primula malacoides0.7420.7990.928
      Glechoma longituba0.7310.7810.966
      Tropaeolum majus0.7890.8530.981
      Plumeria rubra' Acutifolia'0.7910.8560.967
      Clerodendrum bungei0.7660.8380.963
      Talinum paniculatum0.7610.8150.959
    Tools

    Get Citation

    Copy Citation Text

    Xiaoyu Song, Liting Jin, Yang Zhao, Yue Sun, Tong Liu. Plant Image Recognition with Complex Background Based on Effective Region Screening[J]. Laser & Optoelectronics Progress, 2020, 57(4): 041016

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jul. 8, 2019

    Accepted: Aug. 16, 2019

    Published Online: Feb. 20, 2020

    The Author Email: Song Xiaoyu (sxy9998@126.com), Jin Liting (1942861414@qq.com)

    DOI:10.3788/LOP57.041016

    Topics