Optical Instruments, Volume. 45, Issue 2, 8(2023)

Automatic recognition of water source microorganisms based on particle swarm optimization algorithm

Xingang MIN... Shaoqi HUANG, Shaojie YOU and Bo DAI* |Show fewer author(s)
Author Affiliations
  • School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    Figures & Tables(13)
    Examples of 8 species of microorganisms
    Flow chart of the water source microorganisms recognition system
    Flow chart of semi-automatic microorganisms image segmentation
    Internal structure angle
    Flow chart of establishment of the PSO-SVM recognition model
    Results of different segmentation methods
    Single feature recognition results of semi-automatic segmented image, automatic segmented image and evaluation standard image
    The fitness of PSO
    Microorganisms recognition results of four algorithms
    • Table 1. Results of parameter optimization of ISH feature

      View table
      View in Article

      Table 1. Results of parameter optimization of ISH feature

      采样点个数角度分区范围/(°)特征向量维数识别准确率/%
      1000~30, …, 150~180674.16
      1500~30, ···, 150~180675.25
      1000~15, ···, 165~1801279.41
      1500~15, ···, 165~1801277.72
    • Table 2. Results of parameter optimization of FD feature

      View table
      View in Article

      Table 2. Results of parameter optimization of FD feature

      采样点个数特征向量维数识别准确率/%
      502583.16
      1005086.41
      1507588.50
      20010086.97
    • Table 3. Results of parameter optimization of RI-LBP feature

      View table
      View in Article

      Table 3. Results of parameter optimization of RI-LBP feature

      采样点个数邻域半径/像素特征向量维数识别准确率/%
      411660.94
      421646.84
      8125672.16
      8225666.97
    • Table 4. Results of image evaluation of full-automatic segmentation method and semi-automatic segmentation method

      View table
      View in Article

      Table 4. Results of image evaluation of full-automatic segmentation method and semi-automatic segmentation method

      评价指标微生物类别平均
      月形腔轮虫猛水蚤红虫钩状狭甲轮虫颤藻未知微生物1未知微生物2
      相似度/%(全自动)90.8984.7386.5381.4990.3984.4787.9581.3685.98
      灵敏度/%(全自动)99.4296.1094.0098.1498.2599.1995.9491.2796.54
      特异度/%(全自动)99.9099.3499.7398.7799.7699.8499.8099.8499.62
      相似度/%(半自动)94.1391.6790.9494.1795.6887.1889.3084.4490.94
      灵敏度/%(半自动)99.4096.9996.5298.2598.4399.1297.0192.1997.24
      特异度/%(半自动)99.9799.8499.8599.8099.9799.9199.8499.9199.89
    Tools

    Get Citation

    Copy Citation Text

    Xingang MIN, Shaoqi HUANG, Shaojie YOU, Bo DAI. Automatic recognition of water source microorganisms based on particle swarm optimization algorithm[J]. Optical Instruments, 2023, 45(2): 8

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: APPLICATION TECHNOLOGY

    Received: Nov. 18, 2022

    Accepted: Nov. 18, 2022

    Published Online: Jun. 12, 2023

    The Author Email: DAI Bo (daibo@usst.edu.cn)

    DOI:10.3969/j.issn.1005-5630.2023.002.002

    Topics