Infrared and Laser Engineering, Volume. 54, Issue 1, 20240211(2025)
Research progress on broad-spectrum infrared/terahertz quantum ratchet detectors (inner cover paper·invited)
[1] A ROGALSKI. History of infrared detectors. Opto-Electronics Review, 20, 279-308(2012).
[2] R K BHAN, V DHAR. Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization. Opto-Electronics Review, 27, 174-193(2019).
[3] X HU, X WANG, X YANG et al. An infrared target intrusion detection method based on feature fusion and enhancement. Defence Technology, 16, 737-746(2020).
[4] K KHAKSARI, T NGUYEN, B HILL et al. Review of the efficacy of infrared thermography for screening infectious diseases with applications to COVID-19. Journal of Medical Imaging, 8, 010901(2021).
[5] M A MARTINEZ-JIMENEZ, V M LOZA-GONZALEZ, E S KOLOSOVAS-MACHUCA et al. Diagnostic accuracy of infrared thermal imaging for detecting COVID-19 infection in minimally symptomatic patients. European Journal of Clinical Investigation, 51, e13474(2021).
[6] M J WOOSTER, G J ROBERTS, L GIGLIO et al. Satellite remote sensing of active fires: History and current status, applications and future requirements. Remote Sensing of Environment, 267, 112694(2021).
[7] M GERHARDS, M SCHLERF, K MALLICK et al. Challenges and future perspectives of multi-/Hyperspectral thermal infrared remote sensing for crop water-stress detection: A review. Remote Sensing, 11, 1240(2019).
[8] L FLANNIGAN, L YOELL, C XU. Mid-wave and long-wave infrared transmitters and detectors for optical satellite communications—a review. Journal of Optics, 24, 043002(2022).
[9] [9] LABBÉ I, van DOKKUM P, NELSON E, et al. A population of red cidate massive galaxies ~600 Myr after the Big Bang[J]. Nature , 2023, 616: 266–269.
[10] R A LEWIS. A review of terahertz detectors. Journal of Physics D: Applied Physics, 52, 433001(2019).
[11] A ROGALSKI, F SIZOV. Terahertz detectors and focal plane arrays. Opto-electronics Review, 19, 346-404(2011).
[12] A ROGALSKI, P MARTYNIUK, M KOPYTKO. Challenges of small-pixel infrared detectors: a review. Reports on Progress in Physics, 79, 046501(2016).
[13] Y F LAO, A G U PERERA, L H LI et al. Tunable hot-carrier photodetection beyond the bandgap spectral limit. Nature Photonics, 8, 412-418(2014).
[14] Z HU, L ZHANG, A CHAKRABORTY et al. Terahertz nonlinear hall rectifiers based on spin‐polarized topological electronic states in 1T‐CoTe2. Advanced Materials, 35, 2209557(2023).
[15] D PALAFERRI, Y TODOROV, A BIGIOLI et al. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers. Nature, 556, 85-88(2018).
[16] C L TAN, H MOHSENI. Emerging technologies for high performance infrared detectors. Nanophotonics, 7, 169-197(2018).
[17] X LI, X M SHAO, H M GONG et al. Recent advances in short wavelength infrared InGaAs focal plane arrays. Journal of Infrared and Millimeter Waves, 41, 129-138(2022).
[18] [18] KLIPSTEIN P C, ARMON E, AVNON E, et al. HOT MWIR technology at SCD [C]Infrared Technology Applications XLVIII, SPIE, 2022, 12107: 176184.
[19] Z L FU, L L GU, X G GUO et al. Frequency up-conversion photon-type terahertz imager. Scientific Reports, 6, 25383(2016).
[20] F CAPASSO. Band-gap engineering: from physics and materials to new semiconductor devices. Science, 235, 172-176(1987).
[21] [21] SCHNEIDER H, LIU H C. Quantum Well Infrared Photodetects[M]. Berlin: Springer Verlag, 2007.
[22] A G U PERERA. Heterojunction and superlattice detectors for infrared to ultraviolet. Progress in Quantum Electronics, 48, 1-56(2016).
[23] H LI, W J WAN, Z Y TAN et al. 6.2-GHz modulated terahertz light detection using fast terahertz quantum well photodetectors. Scientific Reports, 7, 1-8(2017).
[24] D PALAFERRI, Y TODOROV, Y N CHEN et al. Patch antenna terahertz photodetectors. Applied Physics Letters, 106, 161102(2015).
[25] L LI, P BAI, Y ZHANG et al. Optical field simulation of edge coupled terahertz quantum well photodetectors. AIP Advances, 8, 035214(2018).
[26] R ZHANG, Z L FU, L L GU et al. Terahertz quantum well photodetectors with reflection-grating couplers. Applied Physics Letters, 105, 231123(2014).
[27] K K CHOI, J SUN, E A DECUIR et al. Electromagnetic modeling and resonant detectors and arrays. Infrared Physics & Technology, 70, 153-161(2015).
[28] [28] GIGETTA F R, BAUMANN E, THÉRON R, et al. Sht wavelength (4 μm) quantum cade detect based on strain compensated InGaAs∕ InAlAs[J]. Applied Physics Letters , 2008, 92(12): 121101.
[29] [29] QUIND G, MISMER C, HAKL M, et al. High speed, antennaenhanced 10.3 μm quantum cade detect[J]. Applied Physics Letters , 2022, 120(9): 091108.
[30] Y XIE, N YANG, S DUAN et al. Mid-infrared-pumped quantum cascade structure for high-sensitive terahertz detection. Optics Express, 24, 15180-15188(2016).
[31] P BAI, Y H ZHANG, X G GUO et al. Realization of the high-performance THz GaAs homojunction detector below the frequency of Reststrahlen band. Applied Physics Letters, 113, 241102(2018).
[32] P BAI, Y ZHANG, T WANG et al. Broadband THz to NIR up-converter for photon-type THz imaging. Nature Communications, 10, 3513(2019).
[33] S G MATSIK, M B M RINZAN, A G U PERERA et al. Cutoff tailorability of heterojunction terahertz detectors. Applied Physics Letters, 82, 139-141(2003).
[34] M B M RINZAN, A G U PERERA, S G MATSIK et al. Terahertz absorption in AlGaAs films and detection using heterojunctions. Infrared Physics & Technology, 47, 188-194(2005).
[35] [35] LI X H, HUANG S H, YU Q, et al. Hightemperature photontype ultrabroadb detects based on ratchet structure[J]. Applied Physics Letters , 2023, 123(6): 061112.
[36] X LI, P BAI, S HUANG et al. Bi-functional high-speed and ultrabroad bandwidth detector. ACS Photonics, 10, 2816-2824(2023).
[37] D CHAUHAN, A G U PERERA, L LI et al. Effects of barrier energy offset and gradient in extended wavelength infrared detectors. IEEE Sensors Letters, 2, 1-4(2018).
[38] Y F LAO, A G U PERERA, L H LI et al. Mid-infrared photodetectors operating over an extended wavelength range up to 90 K. Optics Letters, 41, 285-288(2016).
[39] B LAU, O KEDEM. Electron ratchets: State of the field and future challenges. The Journal of Chemical Physics, 152, 200901(2020).
[40] B LAU, O KEDEM, M KODAIMATI et al. A silicon ratchet to produce power from below‐bandgap photons. Advanced Energy Materials, 7, 1701000(2017).
[41] A VAQUERO-STAINER, M YOSHIDA, N P HYLTON et al. Semiconductor nanostructure quantum ratchet for high efficiency solar cells. Communications Physics, 1, 1-7(2018).
[42] E M ROELING, W C GERMS, B SMALBRUGGE et al. Organic electronic ratchets doing work. Nature Materials, 10, 51-55(2011).
[43] P FALTERMEIER, P OLBRICH, W PROBST et al. Helicity sensitive terahertz radiation detection by dual-grating-gate high electron mobility transistors. Journal of Applied Physics, 118, 084301(2015).
[44] P OLBRICH, J KAMANN, M KÖNIG et al. Terahertz ratchet effects in graphene with a lateral superlattice. Physical Review B, 93, 075422(2016).
[45] [45] BAI P, YANG N, CHU W, et al. Ultrabroadb THzIR upconversion photovoltaic response in semiconduct ratchetbased upconverter[J]. Applied Physics Letters , 2021, 119(24): 241104.
[46] [46] CHAUHAN D, PERERA A G U, LI L H, et al. Dark current photesponse acteristics of extended wavelength infrared photodetects[J]. Journal of Applied Physics , 2017, 122(2): 024501.
[47] [47] BAI P, ZHANG Y H, GUO X G, et al. Realization of the highperfmance THz GaAs homojunction detect below the frequency of Reststrahlen b[J]. Applied Physics Letters , 2018, 113(24): 241102.
Get Citation
Copy Citation Text
Weidong CHU, Peng BAI, Ning YANG, Yi WANG, Shangjie HAN, Yingxin WANG, Ziran ZHAO. Research progress on broad-spectrum infrared/terahertz quantum ratchet detectors (inner cover paper·invited)[J]. Infrared and Laser Engineering, 2025, 54(1): 20240211
Category:
Received: May. 16, 2024
Accepted: --
Published Online: Feb. 12, 2025
The Author Email: BAI Peng (bai_peng@iapcm.ac.cn), ZHAO Ziran (zhaozr@mail.tsinghua.edu.cn)