Chinese Journal of Quantum Electronics, Volume. 40, Issue 2, 141(2023)

Research progress of terahertz parametric sources

Zecheng WANG1... Zhongming YANG2,*, Xingyu ZHANG2, Shuzhen FAN1, Xiaohan CHEN2, Zhenhua CONG2, Zhaojun LIU2, Zengguang QIN2, Na MING1, Quanxin GUO1 and Liyuan GUO1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(97)

    [1] [1] Li W F, Guo B S, Shi W. Progress of terahertz parametric oscillator [J]. Laser & Optoelectronics Progress, 2014, 51(9): 090005.

    [2] [2] Liu L, Li X, Liu T, et al. Progress of terahertz wave parametric oscillator [J]. Laser & Optoelectronics Progress, 2012, 49(9): 090001.

    [3] [3] Lee A J, Spence D J, Pask H M. Terahertz sources based on stimulated polariton scattering [J]. Progress in Quantum Electronics, 2020, 71: 100254.

    [4] [4] Kawase K, Shikata J I, Ito H. Terahertz wave parametric source [J]. Journal of Physics D: Applied Physics, 2002, 35(3): R1-R14.

    [5] [5] Zang J. Study on Spatial Intensity Distribution of Terahertz Parameter Source and Stokes Parametric Oscillator of KTA Crystal [D]. Qindao: Shandong University, 2019.

    [6] [6] Huang K. On the interaction between the radiation field and ionic crystals [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1951, 208(1094): 352-365.

    [7] [7] Fano U. Atomic theory of electromagnetic interactions in dense materials [J]. Physical Review, 1956, 103(5): 1202-1218.

    [8] [8] Hopfield J J. Theory of the contribution of excitons to the complex dielectric constant of crystals [J]. Physical Review, 1958, 112(5): 1555-1567.

    [9] [9] Loudon R. Theory of stimulated Raman scattering from lattice vibrations [J]. Proceedings of the Physical Society, 1963, 82(3): 393-400.

    [10] [10] Barker A S. Infrared lattice vibrations and dielectric dispersion in corundum [J]. Physical Review, 1963, 132(4): 1474-1481.

    [11] [11] Shen Y R. Theory of stimulated Raman effect.II [J]. Physical Review, 1965, 138(6A): 1741-1746.

    [12] [12] Sussman S S. Tunable Light Scattering From Transverse Optical Modes in Lithium Niobate [D]. California: Stanford University, 1970.

    [13] [13] Henry C H, Hopfield J J. Raman scattering by polaritons [J]. Physical Review Letters, 1965, 15(25): 964-966.

    [14] [14] Henry C H, Garrett C G B. Theory of parametric gain near a lattice resonance [J]. Physical Review, 1968, 171(3): 1058-1064.

    [15] [15] Barker A S, Loudon R. Dielectric properties and optical phonons in LiNbO3 [J]. Physical Review, 1967, 158(2): 433-445.

    [16] [16] Barker A S, Loudon R. Response functions in the theory of Raman scattering by vibrational and polariton modes in dielectric crystals [J]. Reviews of Modern Physics, 1972, 44(1): 18-47.

    [17] [17] Johnston W D, Kaminow I P. Contributions to optical nonlinearity in GaAs as determined from Raman scattering efficiencies [J]. Physical Review, 1969, 188(3): 1209-1211.

    [18] [18] Johnston W D. Nonlinear optical coefficients and the Raman scattering efficiency of LO and TO phonons in acentric insulating crystals [J]. Physical Review B, 1970, 1(8): 3494-3503.

    [19] [19] Kleinman D A. Nonlinear dielectric polarization in optical media [J]. Physical Review, 1962, 126(6): 1977-1979.

    [20] [20] Boyd G D, Bridges T J, Pollack M A, et al. Microwave nonlinear susceptibilities due to electronic and ionic anharmonicities in acentric crystals [J]. Physical Review Letters, 1971, 26(7): 387-390.

    [21] [21] Schwarz U T, Maier M. Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements [J]. Physical Review B, 1998, 58(2): 766-775.

    [22] [22] Choy M M, Byer R L. Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals [J]. Physical Review B, 1976, 14(4): 1693-1706.

    [23] [23] Theis W M, Norris G B, Porter M D. High resolution infrared measurements of the OH-bands in KTiOPO4 [J]. Applied Physics Letters, 1985, 46(11): 1033-1035.

    [24] [24] Kaminow I P, Johnston W D. Quantitative determination of sources of the electro-optic effect in LiNbO3 and LiTaO3 [J]. Physical Review, 1967, 160(3): 520-522.

    [25] [25] Rüsing M, Eigner C, Mackwitz P, et al. Identification of ferroelectric domain structure sensitive phonon modes in potassium titanyl phosphate: A fundamental study [J]. Journal of Applied Physics, 2016, 119(4): 044103.

    [27] [27] Kawase K, Sato M, Taniuchi T, et al. Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler [J]. Applied Physics Letters, 1996, 68(18): 2483-2485.

    [28] [28] Kawase K, Sato M, Nakamura K, et al. Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition [J]. Applied Physics Letters, 1997, 71(6): 753-755.

    [29] [29] Li Z Y, Bing P B, Yuan S, et al. Terahertz wave parametric oscillations at polariton resonance using a MgO:LiNbO3 crystal [J]. Applied Optics, 2015, 54(18): 5645-5649.

    [30] [30] Walsh D, Stothard D J M, Edwards T J, et al. Injection-seeded intracavity terahertz optical parametric oscillator [J]. Journal of the Optical Society of America B, 2009, 26(6): 1196-1202.

    [31] [31] Henry C H, Hopfield J J. Raman scattering by polaritons [J]. Physical Review Letters, 1965, 15(25): 964-966.

    [32] [32] Kurtz S K, Giordmaine J A. Stimulated Raman scattering by polaritons [J]. Physical Review Letters, 1969, 22(5): 192-196.

    [33] [33] Gelbwachs J, Pantell R H, Puthoff H E, et al. A tunable stimulated Raman oscillator [J]. Applied Physics Letters, 1969, 14(9): 258-262.

    [34] [34] Yarborough J M, Sussman S S, Purhoff H E, et al. Efficient, tunable optical emission from LiNbO3 without a resonator [J]. Applied Physics Letters, 1969, 15(3): 102-105.

    [35] [35] Wang W T, Cong Z H, Chen X H, et al. Terahertz parametric oscillator based on KTiOPO4 crystal [J]. Optics Letters, 2014, 39(13): 3706-3709.

    [36] [36] Wang W T. Research on New Terahertz Parametric Sources [D]. Jinan: Shandong University, 2015.

    [37] [37] Yan C, Wang Y Y, Xu D G, et al. Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator [J]. Applied Physics Letters, 2016, 108(1): 011107.

    [38] [38] Jia C Y, Zhang X Y, Cong Z H, et al. Theoretical and experimental study on a large energy potassium titanyl phosphate terahertz parametric source [J]. Optics & Laser Technology, 2020, 121: 105817.

    [39] [39] Jia C Y. Theoretical and Experimental Study on a High Performance Potassium Titanyl Phosphate Terahertz Parametric Source [D]. Qingdao: Shandong University, 2019.

    [40] [40] Wang Z C, Zhang X Y, Cong Z H, et al. Tunable Stokes laser based on KTiOPO4 crystal [J]. Crystals, 2020, 10(11): 974.

    [41] [41] Wu M H, Tsai W C, Chiu Y C, et al. Generation of ~100 kW narrow-line far-infrared radiation from a KTP off-axis THz parametric oscillator [J]. Optica, 2019, 6(6): 723-730.

    [42] [42] Yan C, Wang Y Y, Xu D G, et al. Enhanced stimulated polariton scattering in KTiOPO4 terahertz parametric oscillator based on green laser pumping [C]. st International Conference on Infrared, Millimeter, and Terahertz Waves, 2016.

    [43] [43] Kugel G E, Brehat F, Wyncke B, et al. The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy [J]. Journal of Physics C:Solid State Physics, 1988, 21(32): 5565-5583.

    [44] [44] Zang J, Cong Z H, Chen X H, et al. Tunable KTA Stokes laser based on stimulated polariton scattering and its intracavity frequency doubling [J]. Optics Express, 2016, 24(7): 7558-7565.

    [45] [45] Wang W T, Cong Z H, Liu Z J, et al. THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal [J]. Optics Express, 2014, 22(14): 17092-17098.

    [46] [46] Xu J J, Zhang X Y, Cong Z H, et al. Tunable Nd3+: YAG/KTiOAsO4 Raman lasers [J]. Chinese Journal of Lasers, 2020, 47(6): 0601002.

    [47] [47] Xu J J. Study on Tunable Raman Lasers of KTiOPO4 and KTiOAsO4 Crystals [D]. Qingdao: Shandong University, 2020.

    [48] [48] Watson G H. Polarized Raman spectra of KTiOAsO4 and isomorphic nonlinear-optical crystals [J]. Journal of Raman Spectroscopy, 1991, 22(11): 705-713.

    [49] [49] Ortega T A, Pask H M, Spence D J, et al. Stimulated polariton scattering in an intracavity RbTiOPO4 crystal generating frequency-tunable THz output [J]. Optics Express, 2016, 24(10): 10254-10264.

    [50] [50] Gao F L, Zhang X Y, Cong Z H, et al. Terahertz parametric oscillator with the surface-emitted configuration in RbTiOPO4 crystal [J]. Optics & Laser Technology, 2018, 104: 37-42.

    [51] [51] Gao F L, Zhang X Y, Cong Z H, et al. Tunable Stokes laser based on the cascaded stimulated polariton scattering and stimulated Raman scattering in RbTiOPO4 crystal [J]. Optics Letters, 2020, 45(4): 861-864.

    [52] [52] Gao F L. Studies of Terahertz Parametric Source Based on RbTiOPO4 Crystal [D]. Qingdao: Shandong University, 2020.

    [53] [53] Gao F L, Zhang X Y, Cong Z H, et al. High average power diode-side-pumped intracavity terahertz parametric source based on stimulated polariton scattering in RbTiOPO4 crystal [J]. IEEE Photonics Journal, 2020, 12(2): 1400109.

    [54] [54] Ortega T A. Frequency Extension of Solid-State Terahertz Lasers [D]. Sydney: Macquarie University, 2017.

    [55] [55] Faust W L, Henry C H. Mixing of visible and near-resonance infrared light in GaP [J]. Physical Review Letters, 1966, 17(25): 1265-1268.

    [56] [56] Faust W L, Henry C H, Eick R H. Dispersion in the nonlinear susceptibility of GaP near the reststrahl band [J]. Physical Review, 1968, 173(3): 781-786.

    [57] [57] Barker A S. Dielectric dispersion and phonon line shape in gallium phosphide [J]. Physical Review, 1968, 165(3): 917-922.

    [58] [58] Nishizawa J, Suto K. Semiconductor Raman laser [J]. Journal of Applied Physics, 1980, 51(5): 2429-2431.

    [59] [59] Gorelik V S, Katyba G M. Generation of terahertz radiation in cubic non-centrosymmetric crystals [J]. Bulletin of the Lebedev Physics Institute, 2014, 41(5): 127-134.

    [60] [60] Scott J F, Cheesman L E, Porto S P S. Polariton spectrum of α-quartz [J]. Physical Review, 1967, 162(3): 834-840.

    [61] [61] Biraud-Laval S, Reinisch R, Paraire N, et al. Raman-susceptibility, damping-constant, and oscillator-strength determination from stimulated polaritons in quartz [J]. Physical Review B, 1976, 13(4): 1797-1801.

    [62] [62] Sun B, Bai X P, Liu J S, et al. Investigation of a terahertz-wave parametric oscillator using LiTaO3 with the pump-wavelength tuning method [J]. Laser Physics, 2014, 24(3): 035402.

    [63] [63] Chang T S, Johnson B C, Amzallag E, et al. Temperature dependence of polariton dispersion in LiTaO3 [J]. Optics Communications, 1971, 4(1): 72-74.

    [64] [64] Allan D, Cracknell A P. Polaritons in LiTaO3 [J]. Journal of Physics C : Solid State Physics, 1977, 10(1): 123-136.

    [65] [65] Amzallag E, Chang T S, Johnson B C, et al. Stimulated Raman and polariton scattering in LiIO3 [J]. Journal of Applied Physics, 1971, 42(8): 3251-3252.

    [66] [66] Kulevsky L A, Polivanov Y N, Poluektov S N. Light scattering by polaritons in LiIO3 [J]. Journal of Raman Spectroscopy, 1975, 3(2/3): 239-254.

    [67] [67] Zvirgzds J A, Habbal F, Nicola J H, et al. Polariton scattering in potassium dihydrogen phosphate KDP [J]. Physical Review B, 1979, 19(2): 1178-1182.

    [68] [68] Kawase K, Shikata J, Minamide H, et al. Arrayed silicon prism coupler for a terahertz-wave parametric oscillator [J]. Applied Optics, 2001, 40(9): 1423-1426.

    [69] [69] Imai K, Kawase K, Shikata J I, et al. Injection-seeded terahertz-wave parametric oscillator [J]. Applied Physics Letters, 2001, 78(8): 1026-1028.

    [70] [70] Kawase K, Minamide H, Imai K, et al. Injection-seeded terahertz-wave parametric generator with wide tunability [J]. Applied Physics Letters, 2002, 80(2): 195-197.

    [71] [71] Ikari T, Zhang X B, Minamide H, et al. THz-wave parametric oscillator with a surface-emitted configuration [J]. Optics Express, 2006, 14(4): 1604-1610.

    [72] [72] Minamide H, Ikari T, Ito H. Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration [J]. Review of Scientific Instruments, 2009, 80(12): 123104.

    [73] [73] Walsh D, Stothard D J M, Edwards T J, et al. Injection-seeded intracavity terahertz optical parametric oscillator [J]. Journal of the Optical Society of America B, 2009, 26(6): 1196-1202.

    [74] [74] Ikari T, Guo R X, Minamide H, et al. Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration [J]. Journal of the European Optical Society-Rapid Publications, 2010, 5: 10054.

    [75] [75] Minamide H, Hayashi S, Nawata K, et al. Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2014, 35(1): 25-37.

    [76] [76] Tang G Q, Zhang X Y, Cong Z H, et al. Terahertz parametric source generating pulse energy of 6.5 μJ at 1.74 THz [C]. th International Conference on Infrared, Millimeter, and Terahertz Waves, 2014.

    [77] [77] Wang W T, Zhang X Y, Wang Q P, et al. Multiple-beam output of a surface-emitted terahertz-wave parametric oscillator by using a slab MgO:LiNbO3 crystal [J]. Optics Letters, 2014, 39(4): 754-757.

    [78] [78] Tang G Q, Cong Z H, Qin Z G, et al. Energy scaling of terahertz-wave parametric sources [J]. Optics Express, 2015, 23(4): 4144-4152.

    [79] [79] Tang G Q. The Studies of High Energy Nanosecond Terahertz Parametric Sources [D]. Jinan: Shandong University, 2015.

    [80] [80] Yang Z, Wang Y Y, Xu D G, et al. THz wave parametric oscillator with a surface-emitted ring-cavity configuration [C]. Infrared, Millimeter-Wave, and Terahertz Technologies IV, 2016.

    [81] [81] Stothard D J M, Edwards T J, Walsh D, et al. Line-narrowed, compact, and coherent source of widely tunable terahertz radiation [J]. Applied Physics Letters, 2008, 92(14): 141105.

    [82] [82] Lee A, He Y B, Pask H. Frequency-tunable THz source based on stimulated polariton scattering in Mg:LiNbO3 [J]. IEEE Journal of Quantum Electronics, 2013, 49(3): 357-364.

    [83] [83] Lee A J, Pask H M. Continuous wave, frequency-tunable terahertz laser radiation generated via stimulated polariton scattering [J]. Optics Letters, 2014, 39(3): 442-445.

    [84] [84] Warrier A M, Li R, Lin J P, et al. Tunable terahertz generation in the picosecond regime from the stimulated polariton scattering in a LiNbO3 crystal [J]. Optics Letters, 2016, 41(18): 4409-4412.

    [85] [85] Moriguchi Y, Nawata K, Takida Y, et al. High repetition-rate, widely tunable, injection-seeded terahertz-wave parametric generator [C]. International Conference on Infrared, Millimeter, and Terahertz Waves, 2017.

    [86] [86] Ortega T A, Pask H M, Spence D J, et al. THz polariton laser using an intracavity Mg:LiNbO3 crystal with protective Teflon coating [J]. Optics Express, 2017, 25(4): 3991-3999.

    [87] [87] Lee A J, Spence D J, Pask H M. Tunable THz polariton laser based on 1342 nm wavelength for enhanced terahertz wave extraction [J]. Optics Letters, 2017, 42(14): 2691-2694.

    [88] [88] Ortega T A, Pask H M, Spence D J, et al. Tunable 3-6 THz polariton laser exceeding 0.1 mW average output power based on crystalline RbTiOPO4 [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 5100806.

    [89] [89] Zheng Y M, Lee A, Spence D, et al. Linewidth-narrowing of a continuous wave terahertz polariton laser using an intracavity etalon [J]. Optics Letters, 2020, 45(1): 157-160.

    [90] [90] Gao F L, Zhang X Y, Cong Z H, et al. Enhancement of intracavity-pumped terahertz parametric oscillator power by adopting diode-side pumped configuration based on KTiOPO4 crystal [J]. Crystals, 2019, 9(12): 666.

    [91] [91] Spence D J, Pask H M, Lee A J. Analytic theory for lasers based on stimulated polariton scattering [J]. Journal of the Optical Society of America B, 2019, 36(6): 1706-1715.

    [92] [92] Qin Y, Li Z Y, Yan Q, et al. Numerical modeling of an injection-seeded terahertz-wave parametric generator [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41(3): 276-290.

    [93] [93] Qin Y, Li Z Y, Yan Q, et al. A model of terahertz parametric process including spontaneous parametric down-conversion [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42(6): 656-670.

    [94] [94] Zang J, Wu D, Zhang X Y, et al. The investigation on the beam spatial intensity distributions in the injection-seeded terahertz parametric generator [J]. IEEE Photonics Journal, 2019, 11(2): 1400211.

    [95] [95] Wang P, Zhang X Y, Cong Z H, et al. Modeling of intracavity-pumped Q-switched terahertz parametric oscillators based on stimulated polariton scattering [J]. Optics Express, 2020, 28(5): 6966-6980.

    [96] [96] Wang P. Theoretical and Experimental Study on Intracavity Terahertz Parametric Oscillator [D]. Qingdao: Shandong University, 2020.

    [97] [97] Degnan J J. Theory of the optimally coupled Q-switched laser [J]. IEEE Journal of Quantum Electronics, 1989, 25(2): 214-220.

    [98] [98] Wang Z C, Fan S Z, Chen X H, et al. Modeling for extracavity-pumped terahertz parametric oscillators [J]. Optics Express, 2022, 30(16): 29518-29530.

    Tools

    Get Citation

    Copy Citation Text

    WANG Zecheng, YANG Zhongming, ZHANG Xingyu, FAN Shuzhen, CHEN Xiaohan, CONG Zhenhua, LIU Zhaojun, QIN Zengguang, MING Na, GUO Quanxin, GUO Liyuan. Research progress of terahertz parametric sources[J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 141

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 19, 2022

    Accepted: --

    Published Online: Apr. 15, 2023

    The Author Email: Zhongming YANG (zhongming.yang@sdu.edu.cn)

    DOI:10.3969/j.issn.1007-5461.2023.02.001

    Topics