Journal of Applied Optics, Volume. 45, Issue 4, 759(2024)

Image segmentation method for metal coating peeling and corrosion based on improved U2-Net network

Yunfeng NI1, Qingting QI1, Daixian ZHU1、*, Qiang QIU1, and Shulin LIU2
Author Affiliations
  • 1College of Communication and Information Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
  • 2College of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
  • show less
    References(23)

    [1] S HARSIMRAN, K SANTOSH, K RAKESH. Overview of corrosion and its control: a critical review. Progress in Engineering Science, 3, 13-24(2021).

    [2] R VOEOBEL, I IVASENKO, O BEREHULYAK et al. Segmentation of rust defects on painted steel surfaces by intelligent image analysis. Automation in Construction, 123, 103515(2021).

    [3] Jihua YANG, Hua YANG, Weiding JIA et al. Adaptive enhancement method for LiDAR images based on multiscale retinex. Laser Journal, 44, 192-197(2023).

    [5] Z HUANG, X WANG, L HUANG et al. Ccnet: criss-cross attention for semantic segmentation, 603-612(2019).

    [7] F CHOLLET. Xception: deep learning with depthwise separable convolutions, 1251-1258(2017).

    [8] M TAN, Q LE. Efficientnet: rethinking model scaling for convolutional neural networks, 6105-6114(2019).

    [9] Y WU, X SHEN, F BU et al. Ultrasound image segmentation method for thyroid nodules using ASPP fusion features. IEEE Access, 8, 172457-172466(2020).

    [10] L C CHEN, G PAPANDREOU, I KOKKINOS et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2017).

    [13] S WOO, J PARK, J Y LEE et al. Cbam: convolutional block attention module. Proceedings of the European Conference on Computer Vision, 11211, 3-19(2018).

    [14] Cuiyun LI, Jing BAI, Liang ZHENG. Medical image segmentation based on the fusion of edge enhancement attention mechanism and U-Net network. Journal of Graphics, 43, 273-278(2022).

    [15] X QIN, Z ZHANG, C HUANG et al. U2-Net: going deeper with nested U-structure for salient object detection. Pattern Recognition, 106, 107404(2020).

    [16] O RONNEBERGER, P FISCHER, T BROX. U-net: convolutional networks for biomedical image segmentation, 234-241(2015).

    [17] S LIU, D HUANG. Receptive field block net for accurate and fast object detection, 385-400(2018).

    [19] C SZEGEDY, V VANHOUCKE, S IOFFE et al. Rethinking the inception architecture for computer vision, 2818-2826(2016).

    [20] T Y LIN, P GOYAL, R GIRSHICK et al. Focal loss for dense object detection, 2980-2988(2017).

    [21] S M SALEHI, D ERDOGMUS, A GHOLIPOUR. Tversky loss function for image segmentation using 3D fully convolutional deep networks, 379-387(2017).

    Tools

    Get Citation

    Copy Citation Text

    Yunfeng NI, Qingting QI, Daixian ZHU, Qiang QIU, Shulin LIU. Image segmentation method for metal coating peeling and corrosion based on improved U2-Net network[J]. Journal of Applied Optics, 2024, 45(4): 759

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jun. 21, 2023

    Accepted: --

    Published Online: Oct. 21, 2024

    The Author Email: ZHU Daixian (朱代先)

    DOI:10.5768/JAO202445.0402005

    Topics