Journal of Applied Optics, Volume. 45, Issue 4, 759(2024)
Image segmentation method for metal coating peeling and corrosion based on improved U2-Net network
[1] S HARSIMRAN, K SANTOSH, K RAKESH. Overview of corrosion and its control: a critical review. Progress in Engineering Science, 3, 13-24(2021).
[2] R VOEOBEL, I IVASENKO, O BEREHULYAK et al. Segmentation of rust defects on painted steel surfaces by intelligent image analysis. Automation in Construction, 123, 103515(2021).
[3] Jihua YANG, Hua YANG, Weiding JIA et al. Adaptive enhancement method for LiDAR images based on multiscale retinex. Laser Journal, 44, 192-197(2023).
[5] Z HUANG, X WANG, L HUANG et al. Ccnet: criss-cross attention for semantic segmentation, 603-612(2019).
[7] F CHOLLET. Xception: deep learning with depthwise separable convolutions, 1251-1258(2017).
[8] M TAN, Q LE. Efficientnet: rethinking model scaling for convolutional neural networks, 6105-6114(2019).
[9] Y WU, X SHEN, F BU et al. Ultrasound image segmentation method for thyroid nodules using ASPP fusion features. IEEE Access, 8, 172457-172466(2020).
[10] L C CHEN, G PAPANDREOU, I KOKKINOS et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2017).
[13] S WOO, J PARK, J Y LEE et al. Cbam: convolutional block attention module. Proceedings of the European Conference on Computer Vision, 11211, 3-19(2018).
[14] Cuiyun LI, Jing BAI, Liang ZHENG. Medical image segmentation based on the fusion of edge enhancement attention mechanism and U-Net network. Journal of Graphics, 43, 273-278(2022).
[15] X QIN, Z ZHANG, C HUANG et al. U2-Net: going deeper with nested U-structure for salient object detection. Pattern Recognition, 106, 107404(2020).
[16] O RONNEBERGER, P FISCHER, T BROX. U-net: convolutional networks for biomedical image segmentation, 234-241(2015).
[17] S LIU, D HUANG. Receptive field block net for accurate and fast object detection, 385-400(2018).
[19] C SZEGEDY, V VANHOUCKE, S IOFFE et al. Rethinking the inception architecture for computer vision, 2818-2826(2016).
[20] T Y LIN, P GOYAL, R GIRSHICK et al. Focal loss for dense object detection, 2980-2988(2017).
[21] S M SALEHI, D ERDOGMUS, A GHOLIPOUR. Tversky loss function for image segmentation using 3D fully convolutional deep networks, 379-387(2017).
Get Citation
Copy Citation Text
Yunfeng NI, Qingting QI, Daixian ZHU, Qiang QIU, Shulin LIU. Image segmentation method for metal coating peeling and corrosion based on improved U2-Net network[J]. Journal of Applied Optics, 2024, 45(4): 759
Category: Research Articles
Received: Jun. 21, 2023
Accepted: --
Published Online: Oct. 21, 2024
The Author Email: ZHU Daixian (朱代先)