NUCLEAR TECHNIQUES, Volume. 48, Issue 2, 020001(2025)

Advances in applications of in situ synchrotron-based X-ray techniques in supercapacitor research

Qingcao WEN1...3, Zijian XU2,3, Aiying CHEN1, and Renzhong TAI23,* |Show fewer author(s)
Author Affiliations
  • 1University of Shanghai for Science and Technology, Shanghai 200082, China
  • 2Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
  • 3Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    Figures & Tables(18)
    Ragone plot illustrating the performances of specific power vs. specific energy for different electrical energy storage technologies. Times shown in the plot are the discharge time, obtained by dividing the energy density by the power density[5] (color online)
    K-edge absorption spectra of Cu[24]
    In situ synchrotron radiation electrochemical XAS equipment[26]
    Comparison of in situ XANES data collected on the electrode with that from the reaction model of Co(OH)2 and CoOOH transformation (color online) (a) In-situ XANES spectra of the entire charge/discharge cycle, (b) Reaction model of Co(OH)2 and CoOOH phase transformation, (c) In situ XANES spectra of the charging process, (d) In situ XANES spectra of the discharge process[26]
    Structural changes of the electrode material during phase transition obtained by theoretical computations in comparison with in situ EXAFS fitting results (color online) (a) Phase transformation energy profile from DFT and the corresponding lattice structure changes, (b) In situ EXAFS spectra of an entire charge/discharge cycle in 3D mode, (c~d) In situ EXAFS spectra of the charge and discharge processes, respectively, (e~g) Fitting results of EXAFS spectra A, D and H, respectively[26]
    Analysis of charge storage mechanism in ZnxCo1-xO NRs (color online)(a) O-K edge XAS spectra of Zn0.04Co0.96O NRs before and after processing at -0.2 V (Ag/AgCl), (b) Co-L2,3 edge XAS spectra of ZnxCo1-xO NRs collected at -1 V and -0.2 V (Ag/AgCl), (c) Average Co-oxidation state change (right) and the corresponding theoretical/experimental capacity (left) of ZnxCo1-xO NRs from -1 V to -0.2 V (Ag/AgCl) based on the Co-L2,3 edge spectra fitting[27]
    Mn K-edge XANES spectra at different working potentials of Li-birnessite with Li2SO4 (a), Na2SO4 (b), K2SO4 (c), Rb2SO4 (d), and Cs2SO4 (e) electrolytes at 0.5 mol·L-1 [28] (color online)
    Variation of the Mn oxidation states in Li-MnO2 nanoplates with respect to the applied potentials. These oxidation states were derived from the XAS measurements of Li-birnessite within Li2SO4 (a), Na2SO4 (b), K2SO4 (c), Rb2SO4 (d), and Cs2SO4 (e) electrolytes, respectively[28] (color online)
    (a) In-situ high-resolution Ni K-edge fluorescence XAS spectra of the as-prepared Ni(OH)2-N-rGOae electrode at different charging/discharging potentials and XAS spectra of Ni standard compounds, and (b) Ni oxidation state vs. ΔE (eV) of the Ni(OH)2-N-rGOae electrode during charging/discharging by a chronoamperometry method at different applied potentials (Ag/AgCl)[29] (color online)
    In-situ electrochemistry SAXS experimental device[38]
    Combined X-ray scattering and theoretical modeling for analysis[40] (color online)
    Quantification of parameters controlling ion charge storage mechanisms[41] (color online)
    Ion concentration change during potentiostatic charge/discharge[41] (color online)
    Schematic of AMPIX electrochemical reaction cell[47]
    (a) CV curves of the first 27 cycles of a ZMO electrode cycled in Li2SiO4 (aq) and the CV curve of a CLMO electrode (red dashed line) is also shown for comparison; (b) operando synchrotron XRD patterns obtained at the end of each cycle; and (c) XANES spectra of ZMO, ion-exchange derived TLMO, and CLMO[46] (color online)
    (a) Operando XRD patterns during a CV scan and (b) in situ XANES spectra acquired at the end of cathodic and anodic scans of a CV cycle, respectively[46] (color online)
    Synchrotron XRD (λ=0.467 94 Å) patterns and interlayer spacing vs. temperature curves recorded for BGO in: (a, d) 0.5 mol·L-1 TEA-BF4 electrolyte, (b, e) 1 mol·L-1 TEA-BF4 electrolyte, and (c, f) 2 mol·L-1 TEA-BF4 electrolyte, upon cooling until the freezing of acetonitrile[48] (color online)
    • Table 1. Advantages and disadvantages of different in situ synchrotron radiation characterization techniques

      View table
      View in Article

      Table 1. Advantages and disadvantages of different in situ synchrotron radiation characterization techniques

      表征方式名称

      Characterization techniques

      优点Advantages缺点Disadvantages

      已有

      Current status

      X射线

      吸收谱(XAS)

      X-ray Absorption Spectroscopy (XAS)

      硬线

      Hard XAS

      XANES:价态变化、共价性和元素特有的局部配位环境

      EXAFS:键长、配位数、无序度的局部结构变化

      XANES: Reveals valence changes, covalency, and element-specific local coordination environmentEXAFS: Provides information about local structural changes including bond lengths, coordination numbers, and disorder

      不能研究低原子序数元素

      Cannot study elements with low atomic numbers

      软线

      Soft XAS

      1)探测电极材料键长、配位数、无序度的局部结构变化

      2)透射深度:俄歇电子产额:~1 nm;总电子产额:~10 nm;

      部分电子产额:~5 nm;总荧光产额:~500 nm

      1) Detects changes in bond lengths, coordination numbers, and local structural disorder of electrode materials2) Probing depth: Auger electron yield: ~1 nm; Total electron yield: ~10 nm; Partial electron yield: ~5 nm; Total fluorescence yield: ~500 nm

      1)需要超高真空条件进行测量

      2)难以使用液体电解质构建原位反应池

      1) Requires ultra-high vacuum conditions for measurement2) Difficult to construct in situ reaction cells with liquid electrolytes

      小角散射(SAXS)

      Small-angle X-ray Scattering (SAXS)

      1)散射强度的变化预测储能机理

      2)得到不同孔道的吸附信息

      1) Changes in scattering intensity can predict energy storage mechanisms2) Provides information about adsorption in different pore channels

      不同离子的散射难以定量化

      Difficult to quantify scattering from different ions

      X射线衍射 (XRD)

      X-ray Diffraction (XRD)

      1)获得平均结构信息:结晶度、相纯度、相种类、原子位置、晶格参数

      2)比较容易设计实验和原位反应池

      1) Provides average structural information: crystallinity, phase purity, phase types, atomic positions, lattice parameters2) Relatively easy to design experiments and in situ reaction cells

      非晶材料的信息难以获取

      Difficult to obtain information from amorphous materials

      展望

      Future prospects

      X射线成像

      X-ray imaging

      1)微观/宏观尺度形貌与结构:微裂纹、颗粒断裂、扭曲

      2)可获得化学信息(元素/化学作图)

      3)可以做三维断层成像

      4)空间分辨率:TXM:20~30 nm;STXM:12~40 nm;XFM:亚微米CDI:几纳米

      5)透射深度:TXM:几十微米;STXM:200 nm,XFM:几十微米;CDI:几十纳米

      1) Microscopic/macroscopic morphology and structure: microcracks, particle fracture, distortion2) Can obtain chemical information (elemental/chemical mapping)3) Capable of three-dimensional tomography4) Spatial resolution: TXM: 20~30 nm; STXM: 12~40 nm; XFM: submicron; CDI: several nanometers5) Penetration depth: TXM: tens of micrometers; STXM: 200 nm; XFM: tens of micrometers; CDI: tens of nanometers

      原位反应池的设计相对复杂相对

      Relatively complex design of in situ reaction cells

      对分布函数(PDF)

      Pair Distribution Function (PDF)

      1)短程和长程结构信息:原子对距离,局部有序/无序

      2)有助于解决非晶无序材料的结构问题

      1) Short-range and long-range structural information: atomic pair distances, local order/disorder2) Helps resolve structural problems of amorphous disordered materials

      1)资源有限(可用的光束线站数量很少)

      2)原位反应池设计难度大

      1) Limited resources (few available beamlines)2) Challenging design of in situ reaction cells

    Tools

    Get Citation

    Copy Citation Text

    Qingcao WEN, Zijian XU, Aiying CHEN, Renzhong TAI. Advances in applications of in situ synchrotron-based X-ray techniques in supercapacitor research[J]. NUCLEAR TECHNIQUES, 2025, 48(2): 020001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: INVITED REVIEW

    Received: Apr. 10, 2023

    Accepted: --

    Published Online: Mar. 14, 2025

    The Author Email: TAI Renzhong (TAIRenzhong)

    DOI:10.11889/j.0253-3219.2025.hjs.48.230032

    Topics