Optics and Precision Engineering, Volume. 27, Issue 3, 680(2019)

Overview of hyperspectral image classification

YAN Jing-wen1,*... CHEN Hong-da1 and LIU Lei2 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(55)

    [2] [2] LEE M A, HUANG Y, YAO H, et al.. Determining the effects of storage on cotton and soybean leaf samples for hyperspectral analysis[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2562-2570.

    [3] [3] DALPONTE M, ORKA H O, GOBAKKEN T, et al.. Tree species classification in boreal forests with hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 2632-2645.

    [4] [4] YUAN Y, WANG Q, ZHU G. Fast hyperspectral anomaly detection via High-Order 2-D crossing filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(2): 620-630.

    [5] [5] ZHANG L, ZHANG L, TAO D, et al.. Hyperspectral remote sensing image subpixel target detection based on supervised metric learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4955-4965.

    [6] [6] ZHANG B, WU D, ZHANG L, et al.. Application of hyperspectral remote sensing for environment monitoring in mining areas[J]. Environmental Earth Sciences, 2012, 65(3): 649-658.

    [7] [7] CAMPS-VALLS G, TUIA D, BRUZZONE L, et al.. Advances in hyperspectral image classification: earth monitoring with statistical learning methods[J]. IEEE Signal Processing Magazine, 2013, 31(1): 45-54.

    [8] [8] ZHANG H K, LI Y, JIANG Y N. Research status and prospect of in-depth learning in hyperspectral image classification [J]. Acta Automation, 2018, 44 (6). (in Chinese)

    [9] [9] CHEN Y, LIN Z, ZHAO X, et al.. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2094-2107.

    [11] [11] MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1778-1790.

    [12] [12] BLANZIERI E, MELGANI F. Nearest neighbor classification of remote sensing images with the maximal margin principle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6): 1804-1811.

    [14] [14] HUA Y, ZHANG T, XI H W, et al.. Study on hyperspectral remote sensing image classification method based on decision tree [J]. Computer Technology and Development, 2012, 22 (6): 198-202. (in Chinese)

    [15] [15] LI W, CHEN C, SU H, et al.. Local binary patterns and extreme learning machine for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7): 3681-3693.

    [18] [18] CHEN Y, NASRABADI N M, TRAN T D. Hyperspectral image classification using dictionary-based sparse representation[J]. IEEE Transactions on Geoscience & Remote Sensing, 2011, 49(10): 3973-3985.

    [19] [19] ZHANG H, LI J, HUANG Y, et al.. A nonlocal weighted joint sparse representation classification method for hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 7(6): 2056-2065.

    [20] [20] FU W, LI S, FANG L, et al.. Hyperspectral image classification via shape-adaptive joint sparse representation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(2): 556-567.

    [21] [21] WANG J, JIAO L, WANG S, et al.. Adaptive nonlocal spatial-spectral kernel for hyperspectral imagery classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9): 4086-4101.

    [22] [22] GAN L, XIA J, DU P, et al.. Class-oriented weighted kernel sparse representation with region-level kernel for hyperspectral imagery classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(4): 1118-1130.

    [23] [23] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]. International Conference on Neural Information Processing Systems. Curran Associates Inc. 2012: 1097-1105.

    [24] [24] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. International Conference on Learning Representations, 2014.

    [25] [25] HE K, ZHANG X, REN S, et al.. Deep residual learning for image recognition[J]. Computer Vision and Pattern Recognition, 2016: 770-778.

    [26] [26] SZEGEDY C, LIU W, JIA Y, et al.. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015.

    [27] [27] HU W, HUANG Y, WEI L, et al.. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015(2): 1-12.

    [28] [28] ROMERO A, GATTA C, CAMPS-VALLS G. Unsupervised deep feature extraction for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1349-1362.

    [29] [29] ZHAO W, DU S. Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4544-4554.

    [30] [30] LI W, WU G, ZHANG F, et al.. Hyperspectral image classification using deep pixel-pair features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, PP(99): 1-10.

    [31] [31] ZHANG L, ZHANG L, DU B. Deep learning for remote sensing data: a technical tutorial on the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2016, 4(2): 22-40.

    [32] [32] ZHANG M, LI W, DU Q. Diverse region-based CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2018, 27(6): 2623-2634.

    [33] [33] ZHAO J. Classification of hyperspectral remote sensing images based on K-means clustering[J]. Geospatial Information, 2016,14(3): 26-29. (in Chinese)

    [35] [35] TONG Q X, ZHANG B, ZHENG L F. Hyperspectral Remote Sensing-Principle, Technology and Application[M]. Beijing: Institute of Remote Sensing Applied Research, Chinese Academy of Sciences, 2006. (in Chinese)

    [36] [36] DU P J, XIA J SH, XUE ZH, et al.. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 2016,20(2): 236-256. (in Chinese)

    [38] [38] CAMPS-VALLS G, GOMEZ-CHOVA L, MUNOZ-MARI J, et al.. Composite kernels for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 93-97.

    [39] [39] FAUVEL M, TARABALKA Y, BENEDIKTSSON J A, et al.. Advances in spectral-spatial classification of hyperspectral images[J]. Proceedings of the IEEE, 2013, 101(3): 652-675.

    [40] [40] LI J, MARPU P R, PLAZA A, et al.. Generalized composite kernel framework for hyperspectral Image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9): 4816-4829.

    [41] [41] GHAMISI P, BENEDIKTSSON J A, ULFARSSON M O. Spectral-spatial classification of hyperspectral images based on hidden markov random fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2565-2574.

    [42] [42] HINTON G E, OSINDERO S, TEH Y W, et al.. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.

    [43] [43] HINTON G E, SALAKHUTDINOV R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.

    [44] [44] MA X, WANG H, GENG J, et al.. Spectral-spatial classification of hyperspectral image based on deep auto-encoder[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9): 4073-4085.

    [45] [45] LIU Y, CAO G, SUN Q, et al.. Hyperspectral classification via deep networks and superpixel segmentation[J]. Journal of Remote Sensing, 2015, 36(13): 3459-3482.

    [46] [46] CHEN Y, ZHAO X, JIA X, et al.. Spectral-spatial classification of hyperspectral data based on deep belief network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 2381-2392.

    [47] [47] ZHONG P, GONG Z, LI S, et al.. Learning to diversify deep belief networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3516-3530.

    [48] [48] HU W, HUANG Y, WEI L, et al.. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 2015(2): 1-12.

    [49] [49] MEI S, JI J, BI Q, et al.. Integrating spectral and spatial Information into deep convolutional neural networks for hyperspectral classification[C]. Geoscience and Remote Sensing Symposium. IEEE, 2016: 5067-5070.

    [50] [50] MAKANTASIS K, KARANTZALOS K, DOULAMIS A, et al.. Deep supervised learning for hyperspectral data classification through convolutional neural networks[C]. Geoscience and Remote Sensing Symposium. IEEE, 2015: 4959-4962.

    [51] [51] YUE J, ZHAO W, MAO S, et al.. Spectral-spatial classification of hyperspectral images using deep convolutional neural networks[J]. Remote Sensing Letters, 2015, 6(6): 468-477.

    [52] [52] YANG J, ZHAO Y, CHAN C W, et al.. Hyperspectral image classification using two-channel deep convolutional neural network[C]. Geoscience and Remote Sensing Symposium. IEEE, 2016: 5079-5082.

    [53] [53] XU X, LI W, RAN Q, et al.. Multisource remote sensing data classification based on convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, PP(99): 1-13.

    [54] [54] LI Y, ZHANG H, SHEN Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 2017, 9(1): 67.

    [55] [55] ZHANG M, LI W, DU Q. Diverse region-based CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2018, 27(6): 2623.

    CLP Journals

    [1] Haizhao JING, Lijie TAO, Haokui ZHANG. Specral-spatial classification of hyperspectral imagery with hybrid architecture of 3D-CNN and Transformer[J]. Optics and Precision Engineering, 2024, 32(23): 3504

    [2] ZHU Fu-quan, WANG Hua-jun, YANG Li-ping, LI Chang-guo. Hyperspectral image lossless compressionusing adaptive bands selection and optimal prediction sequence[J]. Optics and Precision Engineering, 2020, 28(7): 1609

    [3] LI Qing-liang, CAI Kai-xuan, GENG Qing-tian, LIU Guang-jie, SUN Ming-yu, ZHANG Yu, YU Fan-hua. Estimation of soil temperature based on XGBoost and LSTM methods[J]. Optics and Precision Engineering, 2020, 28(10): 2337

    [4] WANG Zheng-zhou, DUAN Ya-xuan, WANG Li, TAN Meng, LI Hong-guang, WEI Ji-tong. Detecting optical component damage based on neighborhood vector dot contrast image enhancement[J]. Optics and Precision Engineering, 2019, 27(12): 2668

    [5] HUANG Hong, TANG Yu-xiao, DUAN Yu-le. Feature extraction of hyperspectral image with semi-supervised multi-graph embedding[J]. Optics and Precision Engineering, 2020, 28(2): 443

    [6] LI Qing-liang, CAI Kai-xuan, GENG Qing-tian, LIU Guang-jie, SUN Ming-yu, ZHANG Yu, YU Fan-hua. Estimation of soil temperature based on XGBoost and LSTM methods[J]. Optics and Precision Engineering, 2020, 28(10): 2337

    [7] Haizhao JING, Lijie TAO, Haokui ZHANG. Specral-spatial classification of hyperspectral imagery with hybrid architecture of 3D-CNN and Transformer[J]. Optics and Precision Engineering, 2024, 32(23): 3504

    Tools

    Get Citation

    Copy Citation Text

    YAN Jing-wen, CHEN Hong-da, LIU Lei. Overview of hyperspectral image classification[J]. Optics and Precision Engineering, 2019, 27(3): 680

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 30, 2018

    Accepted: --

    Published Online: May. 30, 2019

    The Author Email: Jing-wen YAN (jwyan@stu.edu.cn)

    DOI:10.3788/ope.20192703.0680

    Topics