Acta Photonica Sinica, Volume. 52, Issue 12, 1201002(2023)
Digital Holographic Method for Observation of Microphysical Parameters of Orographic Clouds
[1] ZHENG X, XI B, DONG X et al. Investigation of aerosol-cloud interactions under different absorptive aerosol regimes using Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) ground-based measurements[J]. Atmospheric Chemistry and Physics, 20, 3483-3501(2020).
[2] LI D, ZHAO C, YUE Z et al. Response of cloud and precipitation properties to seeding at a supercooled cloud-top layer[J]. Earth and Space Science, 9, e2021EA001791(2022).
[3] JENSEN J B, NUGENT A D. Condensational growth of drops formed on giant sea-salt aerosol particles[J]. Journal of the Atmospheric Sciences, 74, 679-697(2017).
[4] DEVENISH B J, BARTELLO P, BRENGUIER J L et al. Droplet growth in warm turbulent clouds[J]. Quarterly Journal of the Royal Meteorological Society, 138, 1401-1429(2012).
[5] BARRETT P A, BLYTH A, BROWN P R A et al. The structure of turbulence and mixed-phase cloud microphysics in a highly supercooled altocumulus cloud[J]. Atmospheric Chemistry and Physics, 20, 1921-1939(2020).
[6] CANNON F, CORDEIRA J M, HECHT C W et al. GPM satellite radar observations of precipitation mechanisms in atmospheric rivers[J]. Monthly Weather Review, 148, 1449-1463(2020).
[7] MA Z, LIU Q, ZHAO C et al. Impacts of transition approach of water vapor-related microphysical processes on quantitative precipitation forecasting[J]. Atmosphere, 13, 1133(2022).
[8] SHANG Huazhe, HUSI Lule, LI Ming et al. Remote sensing of cloud properties based on visible-to-infrared channel observation from passive remote sensing satellites[J]. Acta Optica Sinica, 42, 0600003(2022).
[9] YUAN Jinhan, ZHOU Yongbo, LIU Yubao et al. Effect of cloud droplet spectrum distribution on retrievals of water cloud optical thickness and effective particle radius by AGRI onboard FY-4A satellite[J]. Acta Optica Sinica, 42, 0628004(2022).
[10] SCHMIDT J, WANDINGER U, MALINKA A. Dual-field-of-view Raman lidar measurements for the retrieval of cloud microphysical properties[J]. Applied Optics, 52, 2235-2247(2013).
[11] MARINOU E, VOUDOURI K A, TSIKOUDI I et al. Geometrical and microphysical properties of clouds formed in the presence of dust above the eastern mediterranean[J]. Remote Sensing, 13, 5001(2021).
[12] AUSTIN R T, STEPHENS G L. Retrieval of stratus cloud microphysical parameters using millimeter-wave radar and visible optical depth in preparation for CloudSat: 1. Algorithm formulation[J]. Journal of Geophysical Research: Atmospheres, 106, 28233-28242(2001).
[13] LIAO L, SASSEN K. Investigation of relationships between Ka-band radar reflectivity and ice and liquid water contents[J]. Atmospheric Research, 34, 231-248(1994).
[14] SPIEGEL J K, ZIEGER P, BUKOWIECKI N et al. Evaluating the capabilities and uncertainties of droplet measurements for the fog droplet spectrometer (FM-100)[J]. Atmospheric Measurement Techniques, 5, 2237-2260(2012).
[15] DAI Siqing, DOU Jiazhen, ZHANG Jiwei et al. Digital holography based near-field imaging and its application[J]. Acta Optica Sinica, 40, 0111008(2020).
[16] DI J, LI Y, XIE M et al. Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry[J]. Applied Optics, 55, 7287-7293(2016).
[17] LU Qieni, GE Baozhen, GAO Yan et al. Simultaneous measurement of size and velocity of alcohol spray with digital holography[J]. Acta Photonica Sinica, 39, 266-270(2010).
[18] XIN Lu, XIAO Wen, LIU Yakun et al. Quantitative monitoring of morphological change of cancer cells apoptosis by digital holographic microscopy (invited)[J]. Acta Photonica Sinica, 51, 1017001(2022).
[19] XI T, DI J, LI Y et al. Measurement of ultrafast combustion process of premixed ethylene/oxygen flames in narrow channel with digital holographic interferometry[J]. Optics Express, 26, 28497-28504(2018).
[20] BEALS M J, FUGAL J P. Holographic measurements of inhomogeneous cloud mixing at the centimeter scale[J]. Science, 350, 87-90(2015).
[21] PETER A, OLAF S, MARTIN S et al. Ice crystal habits from cloud chamber studies obtained by in-line holographic microscopy related to depolarization measurements[J]. Applied Optics, 48, 5811-5822(2009).
[22] FUGAL J P, SHAW R A. Cloud particle size distributions measured with an airborne digital in-line holographic instrument[J]. Atmospheric Measurement Techniques, 2, 259-271(2009).
[23] GAO Pan, WANG Jun, TANG Jiabin et al. Investigation of turbulence parameters based on liquid-phase cloud microphysics fluctuation measured by digital holography[J]. Acta Photonica Sinica, 50, 0701002(2021).
[24] GUYOT G, GOURBEYRE C, FEBVRE G et al. Quantitative evaluation of seven optical sensors for cloud microphysical measurements at the Puy-de-Dôme Observatory, France[J]. Atmospheric Measurement Techniques, 8, 4347-4367(2015).
[25] TIITTA P, LESKINEN A, KAIKKONEN V A et al. Intercomparison of holographic imaging and single-particle forward light scattering in situ measurements of liquid clouds in changing atmospheric conditions[J]. Atmospheric Measurement Techniques, 15, 2993-3009(2022).
Get Citation
Copy Citation Text
Chuan ZHANG, Jun WANG, Hao ZHOU, Chenyu YANG, Ke LEI, Jingjing LIU, Dengxin HUA. Digital Holographic Method for Observation of Microphysical Parameters of Orographic Clouds[J]. Acta Photonica Sinica, 2023, 52(12): 1201002
Category:
Received: Jun. 2, 2023
Accepted: Jul. 20, 2023
Published Online: Feb. 19, 2024
The Author Email: Jun WANG (wangjun790102@xaut.edu.cn)