Electronics Optics & Control, Volume. 30, Issue 8, 13(2023)

A Transformer Frequency Domain Learnability Method for Infrared Image Recognition

LAI Guangming, ZHANG Zhuoshi, GUO Xinping, and WANG Min
Author Affiliations
  • [in Chinese]
  • show less
    References(15)

    [14] [14] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//The 31st International Conference on Neural Information Processing Systems.Long Beach:Curran Associates Inc.,2017:6000-6010.

    [15] [15] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An image is worth 16×16 words:Transformers for image recognition at scale[EB/OL].(2021-06-03)[2022-06-17].https://arxiv.org/abs/2010.11929.

    [16] [16] LIU Z,LIN Y T,CAO Y,et al.Swin Transformer:hierarchical vision Transformer using shifted windows[C]//IEEE/CVF International Conference on Computer Vision.Montreal:IEEE,2021:9992-10002.

    [17] [17] TOUVRON H,CORD M,SABLAYROLLES A,et al.Going deeper with image transformers[C]//IEEE/CVF International Conference on Computer Vision.Montreal:IEEE, 2021:32-42.

    [18] [18] LEE J H,HEO M,KIM K R,et al.Single-image depth estimation based on Fourier domain analysis[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:330-339.

    [19] [19] LI S H,XUE K P,ZHU B,et al.FALCON:a Fourier transform based approach for fast and secure convolutional neural network predictions[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020:8702-8711.

    [20] [20] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:770-778.

    [21] [21] ASHFAQ Q,AKRAM U,ZAFAR R.Thermal image dataset for object classification[EB/OL].(2021-05-17)[2022-06-17].https://data.mendeley.com/datasets/btmrycjpbj/1.

    [22] [22] University of Tennessee.IRIS thermal/visible face database[EB/OL].[2022-06-17].https://vcipl-okstate.org/pbvs/bench/Data/02/download.html.

    [23] [23] RAO Y M,ZHAO W L,ZHU Z,et al.Global filter networks for image classification[EB/OL].(2021-10-26)[2022-06-17].https://arxiv.org/abs/2107.00645.

    [24] [24] RUDER S.An overview of gradient descent optimization algorithms[EB/OL].(2017-06-15)[2022-06-17].https://arxiv.org/abs/1609.04747.

    [25] [25] IANDOLA F N,HAN S,MOSKEWICZ M W,et al.SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[EB/OL].(2016-11-04)[2022-06-17].https://arxiv.org/abs/1602.07360.

    [26] [26] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].(2015-04-10)[2022-06-17].https://arxiv.org/abs/1409.1556.

    [27] [27] HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:2261-2269.

    [28] [28] SZEGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE,2015:1-9.

    Tools

    Get Citation

    Copy Citation Text

    LAI Guangming, ZHANG Zhuoshi, GUO Xinping, WANG Min. A Transformer Frequency Domain Learnability Method for Infrared Image Recognition[J]. Electronics Optics & Control, 2023, 30(8): 13

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 17, 2022

    Accepted: --

    Published Online: Jan. 17, 2024

    The Author Email:

    DOI:10.3969/j.issn.1671-637x.2023.08.003

    Topics