Acta Optica Sinica, Volume. 43, Issue 16, 1623014(2023)

Active Lithium Niobate Photonic Integration Based on Ultrafast Laser Lithography

Min Wang1,2, Lingling Qiao3, Zhiwei Fang1,2, Jintian Lin3, Rongbo Wu1,2, Jinming Chen1,2, Zhaoxiang Liu1,2, Haisu Zhang1,2, and Ya Cheng1,3、*
Author Affiliations
  • 1The Extreme Optoelectromechanix Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
  • 2Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
  • 3State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    References(101)

    [1] Coldren L A, Corzine S W, Mašanović M L[M]. Diode lasers and photonic integrated circuits: coldren/diode lasers 2E(2012).

    [2] Weis R S, Gaylord T K. Lithium niobate: summary of physical properties and crystal structure[J]. Applied Physics A, 37, 191-203(1985).

    [3] Boes A, Corcoran B, Chang L et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits[J]. Laser & Photonics Reviews, 12, 1700256(2018).

    [4] Lin J T, Bo F, Cheng Y et al. Advances in on-chip photonic devices based on lithium niobate on insulator[J]. Photonics Research, 8, 1910-1936(2020).

    [5] Chen G Y, Li N X, Da Ng J et al. Advances in lithium niobate photonics: development status and perspectives[J]. Advanced Photonics, 4, 034003(2022).

    [6] Zhu D, Shao L B, Yu M J et al. Integrated photonics on thin-film lithium niobate[J]. Advances in Optics and Photonics, 13, 242-352(2021).

    [7] Jia Y C, Wang L, Chen F. Ion-cut lithium niobate on insulator technology: recent advances and perspectives[J]. Applied Physics Reviews, 8, 011307(2021).

    [8] Kong Y F, Bo F, Wang W W et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 32, 1806452(2020).

    [9] Lin J, Xu Y, Fang Z et al. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining[J]. Scientific Reports, 5 8072(2015).

    [10] Wang C, Burek M J, Lin Z et al. Integrated high quality factor lithium niobate microdisk resonators[J]. Optics Express, 22, 30924-30933(2014).

    [11] Wang J, Bo F, Wan S et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation[J]. Optics Express, 23, 23072-23078(2015).

    [12] Wu R B, Zhang J H, Yao N et al. Lithium niobate micro-disk resonators of quality factors above 107[J]. Optics Letters, 43, 4116-4119(2018).

    [13] Zhou J X, Gao R H, Lin J T et al. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching[J]. Chinese Physics Letters, 37, 084201(2020).

    [14] Xu M Y, He M B, Zhang H G et al. High-performance coherent optical modulators based on thin-film lithium niobate platform[J]. Nature Communications, 11, 3911(2020).

    [15] Xu M Y, Zhu Y T, Pittalà F et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission[J]. Optica, 9, 61-62(2022).

    [16] Kharel P, Reimer C, Luke K et al. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes[J]. Optica, 8, 357-363(2021).

    [17] Wang C, Zhang M, Chen X et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 562, 101-104(2018).

    [18] Rao A, Patil A, Rabiei P et al. High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz[J]. Optics Letters, 41, 5700-5703(2016).

    [19] Liu H F, Guo H J, Tan M Q et al. Research progress of lithium niobate thin-film modulators[J]. Chinese Optics, 15, 1-13(2022).

    [20] Vazimali M G, Fathpour S. Applications of thin-film lithium niobate in nonlinear integrated photonics[J]. Advanced Photonics, 4, 034001(2022).

    [21] Zheng Y L, Chen X F. Nonlinear wave mixing in lithium niobate thin film[J]. Advances in Physics: X, 6, 1889402(2021).

    [22] Xie R R, Li G Q, Chen F et al. Microresonators in lithium niobate thin films[J]. Advanced Optical Materials, 9, 2100539(2021).

    [23] Liu S J, Zheng Y L, Chen X F. Nonlinear frequency conversion in lithium niobate thin films[J]. Acta Optica Sinica, 41, 0823013(2021).

    [24] Wu R B, Lin J T, Wang M et al. Fabrication of a multifunctional photonic integrated chip on lithium niobate on insulator using femtosecond laser-assisted chemomechanical polish[J]. Optics Letters, 44, 4698-4701(2019).

    [25] Hu Y W, Yu M J, Zhu D et al. On-chip electro-optic frequency shifters and beam splitters[J]. Nature, 599, 587-593(2021).

    [26] Xu Q, Liu J M, Zhang D L et al. Ultra-compact lithium niobate power splitters designed by an intelligent algorithm[J]. Optics & Laser Technology, 160, 109057(2023).

    [27] Zhang L, Zhang L, Fu X et al. Polarization-independent symmetrical directional coupler utilizing orientation-engineered method on the x-cut lithium-niobate-on-insulator[J]. Optics Communications, 479, 126365(2021).

    [28] Chen G Y, Da Ng J, Lin H L et al. Design and fabrication of high-performance multimode interferometer in lithium niobate thin film[J]. Optics Express, 29, 15689-15698(2021).

    [29] Ke W, Lin Z J, Cai X L. A compact Y-branch power splitter with an arbitrary power splitting ratio based on thin-film lithium niobate platform[C], W4C.6(2021).

    [30] Shen Y, Ruan Z L, Chen K X et al. Broadband polarization splitter-rotator on a thin-film lithium niobate with conversion-enhanced adiabatic tapers[J]. Optics Express, 31, 1354-1366(2023).

    [31] Wu Y N, Sun X R, Li H et al. Lithium niobate thin film polarization beam splitter based on asymmetric directional coupling[J]. Journal of Lightwave Technology, 40, 7843-7847(2022).

    [32] Aghaeimeibodi S, Desiatov B, Kim J H et al. Integration of quantum dots with lithium niobate photonics[J]. Applied Physics Letters, 113, 221102(2018).

    [33] Xia K W, Sardi F, Sauerzapf C et al. Tunable microcavities coupled to rare-earth quantum emitters[J]. Optica, 9, 445-450(2022).

    [34] Cheng R, Huang S, Xu Q et al. Research progress of lithium niobate quantum devices[J]. Laser Technology, 46, 722-728(2022).

    [35] Qi Y F, Li Y. Integrated lithium niobate photonics[J]. Nanophotonics, 9, 1287-1320(2020).

    [36] Ji X W, Cui J M, Feng L H et al. Ring resonator pressure sensor based on LNOI[J]. Laser & Optoelectronics Progress, 59, 0323001(2022).

    [37] Qiao L L, Wang M, Wu R B et al. Ultra-low loss lithium niobate photonics[J]. Acta Optica Sinica, 41, 0823012(2021).

    [38] Luo Q, Bo F, Kong Y F et al. Advances in lithium niobate thin-film lasers and amplifiers: a review[J]. Advanced Photonics, 5, 034002(2023).

    [39] Shams-Ansari A, Renaud D, Cheng R et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate[J]. Optica, 9, 408-411(2022).

    [40] Zhang X, Liu X Y, Ma R et al. Heterogeneously integrated III-V-on-lithium niobate broadband light sources and photodetectors[J]. Optics Letters, 47, 4564-4567(2022).

    [42] Snigirev V, Riedhauser A, Lihachev G et al. Ultrafast tunable lasers using lithium niobate integrated photonics[J]. Nature, 615, 411-417(2023).

    [43] Op de Beeck C, Mayor F M, Cuyvers S et al. III/V-on-lithium niobate amplifiers and lasers[J]. Optica, 8, 1288-1289(2021).

    [44] Li M X, Chang L, Wu L et al. Integrated pockels laser[J]. Nature Communications, 13, 5344(2022).

    [45] Han Y, Zhang X, Huang F J et al. Electrically pumped widely tunable O-band hybrid lithium niobite/III-V laser[J]. Optics Letters, 46, 5413-5416(2021).

    [46] Han Y, Zhang X, Ma R et al. Widely tunable O-band lithium niobite/III-V transmitter[J]. Optics Express, 30, 35478-35485(2022).

    [47] Wang Z, Fang Z W, Liu Z X et al. An on-chip tunable micro-disk laser fabricated on Er3+ doped lithium niobate on insulator[J]. Optics Letters, 46, 380-383(2021).

    [48] Zhou J X, Liang Y T, Liu Z X et al. On-chip integrated waveguide amplifiers on erbium-doped thin-film lithium niobate on insulator[J]. Laser & Photonics Reviews, 15, 2100030(2021).

    [49] Lin J T, Farajollahi S, Fang Z W et al. Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser[J]. Advanced Photonics, 4, 036001(2022).

    [50] Liang Y T, Zhou J X, Liu Z X et al. A high-gain cladded waveguide amplifier on erbium doped thin-film lithium niobate fabricated using photolithography assisted chemo-mechanical etching[J]. Nanophotonics, 11, 1033-1040(2022).

    [51] Zhou Y, Wang Z, Fang Z et al. On-chip microdisk laser on Yb3+-doped thin-film lithium niobate[J]. Optics Letters, 46, 5651-5654(2021).

    [52] Zhou J X, University E C N, Huang T et al. Laser diode-pumped compact hybrid lithium niobate microring laser[J]. Optics Letters, 47, 5599-5601(2022).

    [53] Liang Y T, Zhou J X, Wu R B et al. Monolithic single-frequency microring laser on an erbium-doped thin film lithium niobate fabricated by a photolithography assisted chemo-mechanical etching[J]. Optics Continuum, 1, 1193-1201(2022).

    [54] Gao R H, Guan J L, Yao N et al. On-chip ultra-narrow-linewidth single-mode microlaser on lithium niobate on insulator[J]. Optics Letters, 46, 3131-3134(2021).

    [55] Gao R H, Fu B T, Yao N et al. Electro-optically tunable low phase-noise microwave synthesizer in an active lithium niobate microdisk[J]. Laser & Photonics Reviews, 17, 2200903(2023).

    [56] Zhu Y R, Zhou Y A, Wang Z et al. Electro-optically tunable microdisk laser on Er3+-doped lithium niobate thin film[J]. Chinese Optics Letters, 20, 011303(2022).

    [57] Zhang Z H, Fang Z W, Zhou J X et al. On-chip integrated Yb3+-doped waveguide amplifiers on thin film lithium niobate[J]. Micromachines, 13, 865(2022).

    [58] Chen Z X, Xu Q, Zhang K et al. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers[J]. Optics Letters, 46, 1161-1164(2021).

    [59] Liu Y A, Yan X S, Wu J W et al. On-chip erbium-doped lithium niobate microcavity laser[J]. Science China Physics, Mechanics & Astronomy, 64, 234262(2021).

    [60] Li T Y, Wu K, Cai M L et al. A single-frequency single-resonator laser on erbium-doped lithium niobate on insulator[J]. APL Photonics, 6, 101301(2021).

    [61] Xiao Z Y, Wu K, Cai M L et al. Single-frequency integrated laser on erbium-doped lithium niobate on insulator[J]. Optics Letters, 46, 4128-4131(2021).

    [62] Cai M L, Wu K, Xiang J M et al. Erbium-doped lithium niobate thin film waveguide amplifier with 16 dB internal net gain[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 8200608(2022).

    [63] Luo Q, Hao Z Z, Yang C et al. Microdisk lasers on an erbium-doped lithium-niobite chip[J]. Science China Physics, Mechanics & Astronomy, 64, 234263(2021).

    [64] Zhang R, Yang C, Hao Z Z et al. Integrated lithium niobate single-mode lasers by the Vernier effect[J]. Science China Physics, Mechanics & Astronomy, 64, 294216(2021).

    [65] Luo Q A, Yang C, Hao Z Z et al. Integrated ytterbium-doped lithium niobate microring lasers[J]. Optics Letters, 47, 1427-1430(2022).

    [66] Luo Q A, Yang C, Hao Z Z et al. On-chip ytterbium-doped lithium niobate microdisk lasers with high conversion efficiency[J]. Optics Letters, 47, 854-857(2022).

    [67] Xu Q, Chen F, Chen Z X et al. Er3+-doped lithium niobate thin film: a material platform for ultracompact, highly efficient active microphotonic devices[J]. Advanced Photonics Research, 2, 2100081(2021).

    [68] Minet Y, Herr S J, Breunig I et al. Electro-optically tunable single-frequency lasing from neodymium-doped lithium niobate microresonators[J]. Optics Express, 30, 28335-28344(2022).

    [69] Zhou Y, Zhu Y R, Fang Z W et al. Monolithically integrated active passive waveguide array fabricated on thin film lithium niobate using a single continuous photolithography process[J]. Laser & Photonics Reviews, 17, 2200686(2023).

    [70] Wu R B, Wang M, Xu J et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness[J]. Nanomaterials, 8, 910(2018).

    [71] Gao R H, Yao N, Guan J L et al. Lithium niobate microring with ultra-high Q factor above 108[J]. Chinese Optics Letters, 20, 011902(2022).

    [72] Gao R H, Zhang H S, Bo F et al. Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 108[J]. New Journal of Physics, 23, 123027(2021).

    [73] Wang M, Wu R B, Lin J T et al. Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator[J]. Quantum Engineering, 1, e9(2019).

    [74] Zhang J H, Fang Z W, Lin J T et al. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator[J]. Nanomaterials, 9, 1218(2019).

    [75] Wu R B, Gao L, Liang Y T et al. High-production-rate fabrication of low-loss lithium niobate electro-optic modulators using photolithography assisted chemo-mechanical etching (PLACE)[J]. Micromachines, 13, 378(2022).

    [76] Chen J M, Liu Z X, Song L B et al. Ultra-high-speed high-resolution laser lithography for lithium niobate integrated photonics[J]. Proceedings of SPIE, 12411, 1241109(2023).

    [77] Fang Z W, Haque S, Farajollahi S et al. Polygon coherent modes in a weakly perturbed whispering gallery microresonator for efficient second harmonic, optomechanical, and frequency comb generations[J]. Physical Review Letters, 125, 173901(2020).

    [79] Schawlow A L, Townes C H. Infrared and optical masers[J]. Physical Review, 112, 1940-1949(1958).

    [80] Henry C. Theory of the linewidth of semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 18, 259-264(1982).

    [81] Goldberg P, Milonni P W, Sundaram B. Theory of the fundamental laser linewidth[J]. Physical Review A, 44, 1969-1985(1991).

    [83] Abdelsalam K, Ordouie E, Vazimali M G et al. Tunable dual-channel ultra-narrowband Bragg grating filter on thin-film lithium niobate[J]. Optics Letters, 46, 2730-2733(2021).

    [84] Xu M Y, He M B, Zhu Y T et al. Integrated thin film lithium niobate Fabry–Perot modulator[J]. Chinese Optics Letters, 19, 060003(2021).

    [85] Baghban M A, Schollhammer J, Errando-Herranz C et al. Bragg gratings in thin-film LiNbO3 waveguides[J]. Optics Express, 25, 32323-32332(2017).

    [86] Escalé M R, Pohl D, Sergeyev A et al. Extreme electro-optic tuning of Bragg mirrors integrated in lithium niobate nanowaveguides[J]. Optics Letters, 43, 1515-1518(2018).

    [87] Ulbrich N, Scarpa G, Sigl A et al. High-temperature (T≥470 K) pulsed operation of 5.5 µm quantum cascade lasers with high-reflection coating[J]. Electronics Letters, 37, 1341-1342(2001).

    [88] Qin C Y, Jia K P, Li Q Y et al. Electrically controllable laser frequency combs in graphene-fibre microresonators[J]. Light: Science & Applications, 9, 185(2020).

    [89] Jia K P, Wang X H, Kwon D et al. Photonic flywheel in a monolithic fiber resonator[J]. Physical Review Letters, 125, 143902(2020).

    [90] Yu S P, Fang Z W, Laboratory H N et al. On-chip single-mode thin-film lithium niobate Fabry–Perot resonator laser based on Sagnac loop reflectors[J]. Optics Letters, 48, 2660-2663(2023).

    [91] Liu X M, Yan X S, Liu Y A et al. Tunable single-mode laser on thin film lithium niobate[J]. Optics Letters, 46, 5505-5508(2021).

    [92] Kondratiev N M, Lobanov V E, Shitikov A E et al. Recent advances in laser self-injection locking to high-Q microresonators[J]. Frontiers of Physics, 18, 21305(2023).

    [93] Shim E, Gil-Molina A, Westreich O et al. Tunable single-mode chip-scale mid-infrared laser[J]. Communications Physics, 4, 268(2021).

    [94] Corato-Zanarella M, Gil-Molina A, Ji X C et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths[J]. Nature Photonics, 17, 157-164(2023).

    [95] Ling J W, Staffa J, Wang H M et al. Self-injection locked frequency conversion laser[J]. Laser & Photonics Reviews, 17, 2200663(2023).

    [96] Huang T, Ma Y, Fang Z W et al. Wavelength-tunable narrow-linewidth laser diode based on self-injection locking with a high-Q lithium niobate microring resonator[J]. Nanomaterials, 13, 948(2023).

    [97] Hönninger C, Paschotta R, Graf M et al. Ultrafast ytterbium-doped bulk lasers and laser amplifiers[J]. Applied Physics B, 69, 3-17(1999).

    [98] Krupke W F. Ytterbium solid-state lasers. The first decade[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 1287-1296(2000).

    [99] Paschotta R, Nilsson J, Tropper A C et al. Ytterbium-doped fiber amplifiers[J]. IEEE Journal of Quantum Electronics, 33, 1049-1056(1997).

    [100] Ma Y, Zhou J X, Fang Z W et al. Monolithic Yb3+-doped thin film lithium niobate microring laser fabricated by photolithography-assisted chemo-mechanical etching technology[J]. Journal of the Optical Society of America B, 40, D1-D4(2023).

    [101] Song L B, Chen J M, Wu R et al. Electro-optically tunable optical delay line with a continuous tuning range of ∼220 fs in thin-film lithium niobate[J]. Optics Letters, 48, 2261-2264(2023).

    Tools

    Get Citation

    Copy Citation Text

    Min Wang, Lingling Qiao, Zhiwei Fang, Jintian Lin, Rongbo Wu, Jinming Chen, Zhaoxiang Liu, Haisu Zhang, Ya Cheng. Active Lithium Niobate Photonic Integration Based on Ultrafast Laser Lithography[J]. Acta Optica Sinica, 2023, 43(16): 1623014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: May. 16, 2023

    Accepted: Jul. 6, 2023

    Published Online: Aug. 1, 2023

    The Author Email: Cheng Ya (ya.cheng@siom.ac.cn)

    DOI:10.3788/AOS230994

    Topics