Infrared Technology, Volume. 45, Issue 6, 582(2023)
Multi-modal High-Resolution Hyperspectral Object Detection System Based on Lightweight Platform
[1] [1] Cocks T, Jenssen R, Stewart A, et al. The HyMap airborne hyperspectral sensor: the system, calibration and performance[C]//Proc. 1st EARSeL Workshop on Imaging Spectroscopy, 1998: 37-42.
[2] [2] Babey S K, Anger C D. Compact airborne spectrographic imager (CASI)[C]//Imaging Spectrometry of the Terrestrial Environment, 1930, DOI: 10.1117/12.157052.
[3] [3] Ulbrich G J, Meynart R, Nieke J. APEX-airborne prism experiment: the realization phase of an airborne hyperspectral imager[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2004, 5570: 453-459.
[4] [4] Hamlin L, Green R O, Mouroulis P, et al. Imaging spectrometer science measurements for Terrestrial Ecology: AVIRIS and new developments[C]//Aerospace Conference. IEEE, 2011:1-7.
[5] [5] Pullanagari R R, Kereszturi G, Yule I J. Quantification of dead vegetation fraction in mixed pastures using AisaFENIX imaging spectroscopy data[J]. International Journal of Applied Earth Observation & Geoinformation, 2017, 58: 26-35.
[6] [6] WANG Y. Wide-field-of-view visible and near infrared pushbroom airborne hyperspectral imager (Conference Presentation)[C]// Infrared Technology and Applications XLIV, 2018, 10624: 15-19.
[7] [7] Horstrand P, Guerra R, Rodriguez A, et al. A UAV platform based on a hyperspectral sensor for image capturing and on-board processing[J]. IEEE Access, 2019, 7: 66919-66938. DOI: 10.1109/ACCESS.2019.2913957.
[8] [8] QIN Jianwei, CHAO Kuanglin, Moon S Kim, et al. Hyperspectral and multispectral imaging for evaluating food safety and quality[J]. Journal of Food Engineering, 2013, 118(2): 157-171.
[9] [9] Barreto M, Johansen K, Angel Y, et al. Radiometric assessment of a UAV-Based push-broom hyperspectral camera[J]. Sensors, 2019, 19(21): 4699.
[10] [10] Malenovsky Z, Lucieer A, Robinson S A, et al. Ground-based imaging spectroscopy data for estimation of Antarctic moss relative vigour from remotely sensed chlorophyll content and leaf density at ASPA[J]. Environmental Science, 2015, DOI: 10.4225/15/555C1DB80CB70.
[11] [11] Kanning M, I Khling, Trautz D, et al. High-resolution UAV-based hyperspectral imagery for LAI and chlorophyll estimations from wheat for yield prediction[J]. Remote Sensing, 2018, 10(12): 2000.
[12] [12] ZHU C, Kanaya Y, Tsuchiya M, et al. Optimization of a hyperspectral imaging system for rapid detection of microplastics down to 100 m[J]. Methods X, 2021, 8: 101175.
[13] [13] Lenhard, Karim, Schwarzmaier, et al. Independent laboratory character-rization of NEO HySpex imaging spectrometers VNIR-1600 and SWIR-320m-e[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 1828-1841.
[14] [14] Blaaberg S, T Le, Baarstad I, et al. A next generation VNIR-SWIR hyperspectral camera system: HySpex ODIN-1024[C]//Electro-optical & Infrared Systems: Technology & Applications XI. International Society for Optics and Photonics, 2014, DOI: 10.1117/12.2067497.
[15] [15] Telmo A, Hruka Joná, Pádua Luís, et al. Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry[J]. Remote Sensing, 2017, 9(11):1110.
[16] [16] Nex F, Armenakis C, Cramer M, et al. UAV in the advent of the twenties: Where we stand and what is next[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 184: 215-242.
[18] [18] Stefano P, Angelo P, Simone P, et al. The PRISMA hyperspectral mission: Science activities and opportunities for agriculture and land monitoring[C]//Geoscience & Remote Sensing Symposium. IEEE, 2014: 4558-4561.
[19] [19] Iwasaki A, Tanii J, Kashimura O, et al. Prelaunch status of hyperspectral imager suite (Hisui)[C]//IEEE International Geoscience and Remote Sensing Symposium, 2019: 5887-5890.
[22] [22] Faqeerzada M A, Lohumi S, Kim G, et al. Hyperspectral shortwave infrared image analysis for detection of adulterants in almond powder with one-class classification method[J]. Sensors, 2020, 20(20): 5855.
[23] [23] YU F H, BAI J C, JIN Z Y, et al. Research on precise fertilization method of rice tillering stage based on UAV hyperspectral remote sensing prescription map[J]. Agronomy, 2022, 12(11): 2893.
[24] [24] LIU X M, WANG H C, CAO Y W, et al. Comprehensive growth index monitoring of desert steppe grassland vegetation based on UAV hyperspectral[J]. Front Plant Sci., 2023, 13: 1050999. DOI: 10.3389/fpls.2022.1050999.
[25] [25] Resonon Inc. Hyperspectral Imaging Solutions[EB/OL]. [2023-06-12]. https://resonon.com.
[27] [27] ZENG Y, HAO D, Huete A, et al. Optical vegetation indices for monitoring terrestrial ecosystems globally[J]. Nature Reviews Earth & Environment, 2022(3): 477-493.
[28] [28] WANG Y, WANG L, YU C, et al. Constrained-target band selection for multiple-target detection[J]. IEEE transactions on geoscience and remote sensing: a publication of the IEEE Geoscience and Remote Sensing Society, 2019: 6079-6103, DOI: 10.1109/TGRS.2019.2904264.
[29] [29] Zabalza J, QING C, YUEN P, et al. Fast implementation of two-dimensional singular spectrum analysis for effective data classification in hyperspectral imaging[J]. Journal of the Franklin Institute, 2018, 355(4): 1733-1751.
[30] [30] Berk A, Anderson G P, Acharya P K, et al. MODTRAN (TM) 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2005, 5806: 662-667.
Get Citation
Copy Citation Text
YAN Yunbin, CUI Bolun, YANG Tingting, LI Xin, SHI Zhicheng, DUAN Pengfei, SONG Meiping, LIAN Minlong. Multi-modal High-Resolution Hyperspectral Object Detection System Based on Lightweight Platform[J]. Infrared Technology, 2023, 45(6): 582
Category:
Received: Feb. 22, 2023
Accepted: --
Published Online: Jan. 15, 2024
The Author Email: Bolun CUI (boluncui@qq.com)
CSTR:32186.14.