Photonics Research, Volume. 10, Issue 8, 1947(2022)

Realizing fast temperature measurement and simulating Maxwell’s demon with nearly nondestructive detection in cold atoms

Xin Wang1,2, Yuan Sun1,3、*, and Liang Liu1,4、*
Author Affiliations
  • 1CAS Key Laboratory of Quantum Optics and Center of Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3e-mail: yuansun@siom.ac.cn
  • 4e-mail: liang.liu@siom.ac.cn
  • show less
    References(58)

    [1] W. D. Phillips, H. Metcalf. Laser deceleration of an atomic beam. Phys. Rev. Lett., 48, 596-599(1982).

    [2] S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett., 55, 48-51(1985).

    [3] F. Diedrich, J. C. Bergquist, W. M. Itano, D. J. Wineland. Laser cooling to the zero-point energy of motion. Phys. Rev. Lett., 62, 403-406(1989).

    [4] J. I. Cirac, P. Zoller. Quantum computations with cold trapped ions. Phys. Rev. Lett., 74, 4091-4094(1995).

    [5] I. Kozyryev, L. Baum, K. Matsuda, B. L. Augenbraun, L. Anderegg, A. P. Sedlack, J. M. Doyle. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett., 118, 173201(2017).

    [6] J. Lim, J. R. Almond, M. A. Trigatzis, J. A. Devlin, N. J. Fitch, B. E. Sauer, M. R. Tarbutt, E. A. Hinds. Laser cooled YbF molecules for measuring the electron’s electric dipole moment. Phys. Rev. Lett., 120, 123201(2018).

    [7] L. Baum, N. B. Vilas, C. Hallas, B. L. Augenbraun, S. Raval, D. Mitra, J. M. Doyle. 1D magneto-optical trap of polyatomic molecules. Phys. Rev. Lett., 124, 133201(2020).

    [8] R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, C. E. Mungan. Observation of laser-induced fluorescent cooling of a solid. Nature, 377, 500-503(1995).

    [9] S. D. Melgaard, D. V. Seletskiy, A. D. Lieto, M. Tonelli, M. Sheik-Bahae. Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature. Opt. Lett., 38, 1588-1590(2013).

    [10] P. B. Roder, B. E. Smith, X. Zhou, M. J. Crane, P. J. Pauzauskie. Laser refrigeration of hydrothermal nanocrystals in physiological media. Proc. Natl. Acad. Sci. USA, 112, 15024-15029(2015).

    [11] A. T. M. A. Rahman, P. F. Barker. Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals. Nat. Photonics, 11, 634-638(2017).

    [12] Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, O. Painter. Mechanical oscillation and cooling actuated by the optical gradient force. Phys. Rev. Lett., 103, 103601(2009).

    [13] G. S. Wiederhecker, L. Chen, A. Gondarenko, M. Lipson. Controlling photonic structures using optical forces. Nature, 462, 633-636(2009).

    [14] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [15] A. Derevianko, H. Katori. Colloquium: physics of optical lattice clocks. Rev. Mod. Phys., 83, 331-347(2011).

    [16] W. Ren, T. Li, Q. Qu, B. Wang, L. Li, D. Lü, W. Chen, L. Liu. Development of a space cold atom clock. Natl. Sci. Rev., 7, 1828-1836(2020).

    [17] B. Chen, J. Long, H. Xie, C. Li, L. Chen, B. Jiang, S. Chen. Portable atomic gravimeter operating in noisy urban environments. Chin. Opt. Lett., 18, 090201(2020).

    [18] C. L. Degen, F. Reinhard, P. Cappellaro. Quantum sensing. Rev. Mod. Phys., 89, 035002(2017).

    [19] J. Dalibard, F. Gerbier, G. Juzeliūnas, P. Öhberg. Colloquium: artificial gauge potentials for neutral atoms. Rev. Mod. Phys., 83, 1523-1543(2011).

    [20] R. A. Hart, P. M. Duarte, T.-L. Yang, X. Liu, T. Paiva, E. Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, R. G. Hulet. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms. Nature, 519, 211-214(2015).

    [21] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, M. D. Lukin. Probing many-body dynamics on a 51-atom quantum simulator. Nature, 551, 579-584(2017).

    [22] K. Hammerer, A. S. Sørensen, E. S. Polzik. Quantum interface between light and atomic ensembles. Rev. Mod. Phys., 82, 1041-1093(2010).

    [23] M. Saffman, T. G. Walker, K. Mølmer. Quantum information with Rydberg atoms. Rev. Mod. Phys., 82, 2313-2363(2010).

    [24] D. S. Weiss, E. Riis, Y. Shevy, P. J. Ungar, S. Chu. Optical molasses and multilevel atoms: experiment. J. Opt. Soc. Am. B, 6, 2072-2083(1989).

    [25] R. Gati, B. Hemmerling, J. Fölling, M. Albiez, M. K. Oberthaler. Noise thermometry with two weakly coupled Bose-Einstein condensates. Phys. Rev. Lett., 96, 130404(2006).

    [26] F. M. Spiegelhalder, A. Trenkwalder, D. Naik, G. Hendl, F. Schreck, R. Grimm. Collisional stability of 40 K immersed in a strongly interacting Fermi gas of 6Li. Phys. Rev. Lett., 103, 223203(2009).

    [27] H. Cheng, S. Deng, Z. Zhang, J. Xiang, J. Ji, W. Ren, T. Li, Q. Qu, L. Liu, D. Lü. Uncertainty evaluation of the second-order Zeeman shift of a transportable 87Rb atomic fountain clock. Chin. Opt. Lett., 19, 120201(2021).

    [28] X. Wang, Y. Sun, H.-D. Cheng, J.-Y. Wan, Y.-L. Meng, L. Xiao, L. Liu. Nearly nondestructive thermometry of labeled cold atoms and application to isotropic laser cooling. Phys. Rev. Appl., 14, 024030(2020).

    [29] X. Wang, Y. Sun, L. Liu. Characterization of isotropic laser cooling for application in quantum sensing. Opt. Express, 29, 43435-43444(2021).

    [30] P. G. Petrov, D. Oblak, C. L. G. Alzar, N. Kjærgaard, E. S. Polzik. Nondestructive interferometric characterization of an optical dipole trap. Phys. Rev. A, 75, 033803(2007).

    [31] M. Mehboudi, A. Lampo, C. Charalambous, L. A. Correa, M. A. García-March, M. Lewenstein. Using polarons for sub-nK quantum nondemolition thermometry in a Bose-Einstein condensate. Phys. Rev. Lett., 122, 030403(2019).

    [32] J. C. Maxwell. Theory of Heat(1871).

    [33] V. Serreli, C.-F. Lee, E. R. Kay, D. A. Leigh. A molecular information ratchet. Nature, 445, 523-527(2007).

    [34] S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano. Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat. Phys., 6, 988-992(2010).

    [35] J. V. Koski, V. F. Maisi, T. Sagawa, J. P. Pekola. Experimental observation of the role of mutual information in the nonequilibrium dynamics of a Maxwell demon. Phys. Rev. Lett., 113, 030601(2014).

    [36] J. V. Koski, V. F. Maisi, J. P. Pekola, D. V. Averin. Experimental realization of a Szilard engine with a single electron. Proc. Natl. Acad. Sci. USA, 111, 13786-13789(2014).

    [37] J. V. Koski, A. Kutvonen, I. M. Khaymovich, T. Ala-Nissila, J. P. Pekola. On-chip Maxwell’s demon as an information-powered refrigerator. Phys. Rev. Lett., 115, 260602(2015).

    [38] M. D. Vidrighin, O. Dahlsten, M. Barbieri, M. S. Kim, V. Vedral, I. A. Walmsley. Photonic Maxwell’s demon. Phys. Rev. Lett., 116, 050401(2016).

    [39] P. A. Camati, J. P. S. Peterson, T. B. Batalhão, K. Micadei, A. M. Souza, R. S. Sarthour, I. S. Oliveira, R. M. Serra. Experimental rectification of entropy production by Maxwell’s demon in a quantum system. Phys. Rev. Lett., 117, 240502(2016).

    [40] N. Cottet, S. Jezouin, L. Bretheau, P. Campagne-Ibarcq, Q. Ficheux, J. Anders, A. Auffèves, R. Azouit, P. Rouchon, B. Huard. Observing a quantum Maxwell demon at work. Proc. Natl. Acad. Sci. USA, 114, 7561-7564(2017).

    [41] R. Sánchez, J. Splettstoesser, R. S. Whitney. Nonequilibrium system as a demon. Phys. Rev. Lett., 123, 216801(2019).

    [42] T. Binnewies, U. Sterr, J. Helmcke, F. Riehle. Cooling by Maxwell’s demon: preparation of single-velocity atoms for matter-wave interferometry. Phys. Rev. A, 62, 011601(2000).

    [43] J. J. Thorn, E. A. Schoene, T. Li, D. A. Steck. Dynamics of cold atoms crossing a one-way barrier. Phys. Rev. A, 79, 063402(2009).

    [44] L. Liu, D.-S. Lü, W.-B. Chen, T. Li, Q.-Z. Qu, B. Wang, L. Li, W. Ren, Z.-R. Dong, J.-B. Zhao, W.-B. Xia, X. Zhao, J. W. Ji, M.-F. Ye, Y.-G. Sun, Y.-Y. Yao, D. Song, Z.-G. Liang, S.-J. Hu, D.-H. Yu, X. Hou, W. Shi, H.-G. Zang, J.-F. Xiang, X.-K. Peng, Y.-Z. Wang. In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms. Nat. Commun., 9, 2760(2018).

    [45] G. M. Tino, A. Bassi, G. Bianco, K. Bongs, P. Bouyer, L. Cacciapuoti, S. Capozziello, X. Chen, M. L. Chiofalo, A. Derevianko, W. Ertmer, N. Gaaloul, P. Gill, P. W. Graham, J. M. Hogan, L. Iess, M. A. Kasevich, H. Katori, C. Klempt, X. Lu, L.-S. Ma, H. Müller, N. R. Newbury, C. W. Oates, A. Peters, N. Poli, E. M. Rasel, G. Rosi, A. Roura, C. Salomon, S. Schiller, W. Schleich, D. Schlippert, F. Schreck, C. Schubert, F. Sorrentino, U. Sterr, J. W. Thomsen, G. Vallone, F. Vetrano, P. Villoresi, W. von Klitzing, D. Wilkowski, P. Wolf, J. Ye, N. Yu, M. Zhan. SAGE: a proposal for a space atomic gravity explorer. Eur. Phys. J. D, 73, 228(2019).

    [46] Y. Z. Wang. Atomic beam slowing by diffusive light in an integrating sphere(1979).

    [47] W. Ketterle, A. Martin, M. A. Joffe, D. E. Pritchard. Slowing and cooling atoms in isotropic laser light. Phys. Rev. Lett., 69, 2483-2486(1992).

    [48] H. Batelaan, S. Padua, D. H. Yang, C. Xie, R. Gupta, H. Metcalf. Slowing of 87Rb atoms with isotropic light. Phys. Rev. A, 49, 2780-2784(1994).

    [49] M. Langlois, L. De Sarlo, D. Holleville, N. Dimarcq, J.-F. Schaff, S. Bernon. Compact cold-atom clock for onboard timebase: tests in reduced gravity. Phys. Rev. Appl., 10, 064007(2018).

    [50] E. Guillot, P.-E. Pottie, N. Dimarcq. Three-dimensional cooling of cesium atoms in a reflecting copper cylinder. Opt. Lett., 26, 1639-1641(2001).

    [51] H. J. Metcalf, P. van der Straten. Laser Cooling and Trapping(1999).

    [52] X.-C. Wang, H.-D. Cheng, L. Xiao, B.-C. Zheng, Y.-L. Meng, L. Liu, Y.-Z. Wang. Measurement of spatial distribution of cold atoms in an integrating sphere. Chin. Phys. Lett., 29, 023701(2012).

    [53] S. Trémine, E. de Clercq, P. Verkerk. Isotropic light versus six-beam molasses for Doppler cooling of atoms from background vapor: theoretical comparison. Phys. Rev. A, 96, 023411(2017).

    [54] F.-X. Esnault, D. Holleville, N. Rossetto, S. Guerandel, N. Dimarcq. High-stability compact atomic clock based on isotropic laser cooling. Phys. Rev. A, 82, 033436(2010).

    [55] P. Liu, Y. Meng, J. Wan, X. Wang, Y. Wang, L. Xiao, H. Cheng, L. Liu. Scheme for a compact cold-atom clock based on diffuse laser cooling in a cylindrical cavity. Phys. Rev. A, 92, 062101(2015).

    [56] Y. Wang, Y. Meng, J. Wan, M. Yu, X. Wang, L. Xiao, H. Cheng, L. Liu. Optical-plus-microwave pumping in a magnetically insensitive state of cold atoms. Phys. Rev. A, 97, 023421(2018).

    [57] W. D. Phillips. Nobel lecture: laser cooling and trapping of neutral atoms. Rev. Mod. Phys., 70, 721-741(1998).

    [58] H. Metcalf. Entropy exchange in laser cooling. Phys. Rev. A, 77, 061401(2008).

    Tools

    Get Citation

    Copy Citation Text

    Xin Wang, Yuan Sun, Liang Liu. Realizing fast temperature measurement and simulating Maxwell’s demon with nearly nondestructive detection in cold atoms[J]. Photonics Research, 2022, 10(8): 1947

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Jan. 5, 2022

    Accepted: Jun. 18, 2022

    Published Online: Jul. 27, 2022

    The Author Email: Yuan Sun (yuansun@siom.ac.cn), Liang Liu (liang.liu@siom.ac.cn)

    DOI:10.1364/PRJ.453159

    Topics