Electro-Optic Technology Application, Volume. 37, Issue 1, 25(2022)

Researching Progress of 1 μm Fiber Laser

FANG Weihua, XING Meishu, and WU Yang
Author Affiliations
  • [in Chinese]
  • show less
    References(44)

    [1] [1] PLATONOV N, SHKURIKHIN O, FOMIN V, et al. High-efficient kW-level single-mode ytterbium fiber lasers in all-fiber format with diffraction-limited beam at wavelengths in 1000-1030 nm spectral range[J]. Proceedings of SPIE, 2020, 11260: 1126003.

    [2] [2] CHU Q, SHU Q, LIU Y, et al. 3 kW high OSNR 1030 nm single-mode monolithic fiber amplifier with a 180 pm linewidth[J]. Optics Letters, 2020, 45(23): 6502.

    [3] [3] ZOU S, LI P, WANG L, et al. 980 nm Yb-doped single-mode fiber laser and its frequency-doubling with BIBO[J]. Applied Physics B, 2009, 95(4): 685-690.

    [4] [4] LIN H Q, FENG Y J, FENG YT, et al. 656 W Er-doped, Yb-free large-core fiber laser[J]. Optics Letters, 2018, 43(13): 3080-3083.

    [5] [5] ALOCK I P, FERGUSON A I, HANNA D C, et al. Continuous-wave oscillation of a monomode neodymium-dopedfibre laser at 0.9 μm on the 4F32→4I92 transition[J]. Optics Communications, 1986, 58(6): 405-408.

    [6] [6] SOH D, YOO S, NILSSON J, et al. Cladding pumped Nd-doped fiber laser tunable from 908 to 938 nm[C]//Proceedings of Conference on Lasers and Electro-Optics, IEEE, 2004.

    [7] [7] PAX P H, KHITROV V V, DRACHENBERG D R, et al. Scalable waveguide design for three-level operation inneodymium doped fiber laser[J]. Optics Express, 2016, 24(25): 28633-28647.

    [8] [8] LI R, XIAO H, LENG J, et al. 2240 W high-brightness 1018 nm fiber laser for tandem pump application[J]. Laser Physics Letters, 2017, 14(12): 125102.

    [9] [9] WANG Z H, YAN P, XIAO Q R, et al. Experimental research on high power tandem pumped fiber laser with homemade gain fiber[J]. Proceedings of SPIE, 2020, 11455: 114556V.

    [10] [10] WANG Z H, XIAO Q R, WANG X J, et al. 3000 W tandem pumped all-fiber based on mestic , ber[J]. Acta Physica Sinica, 67(2): 024205.

    [11] [11] WANG J H, CHEN G, ZHANG L, et al. High-efficiency fiber laser at 1018 nm using Yb-doped phosphosilicate fiber[J]. Applied Optics, 2012, 51(29): 7130-7133.

    [12] [12] TIAN J D, XIAO Q R, LI D, et al. Suppressing the amplified spontaneous emission in the high-power 1018 nm monolithic fiber laser by decreasing the feedback from the inner reflections[J]. Journal of the Optical Society of America B, 2020, 37(8): 2514-2522.

    [13] [13] MA R, RAO Y J, ZHANG W L, et al. Multimode random fiber laser for speckle-free imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(1): 1-6.

    [14] [14] YANG T H, CHEN C W, JAU H C, et al. Liquid-crystal random fiber laser for speckle-free imaging[J]. Applied Physics Letters, 2019, 114(19): 1191105.

    [15] [15] MA X Y, YE J, ZHANG Y, et al. Vortex random fiber laser with controllable orbital angular momentum mode[J]. Photonics Reaearch, 2021, 9(2): 266-271.

    [16] [16] WU H, HAN B, WANG Z N, et al. Temporal ghost imaging with random fiber laser[J]. Optics Express, 2020, 28(7): 9957-9964.

    [17] [17] ZHANG H W, HUANG L, SONG J X, et al. Quasi-kilowatt random fiber laser[J]. Optics Letters, 2019, 44(11): 2613-2615.

    [18] [18] DELEN X, MARTIAL I, DIDIERJEAN J, et al. 34 W continuous wave Nd∶YAG single crystal fiber laser emitting at 946 nm[J]. Applied Physics B, 2011, 104(1): 1.

    [19] [19] HANNA D C, PERCIVALl R M, PERRY I R, et al. An Ytterbium-doped monomode fibre laser: broadly tunableoperation from 1·010 μm to 1·162 μm and three-level operation at 974 nm[J]. Journal of Modern Optics, 1990, 37(4): 517-525.

    [20] [20] JAUREGUI C, LIMPERT J, TUNNERMANN A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867.

    [21] [21] ZERVAS M. High power ytterbium-doped fiber lasers fundamentals and applications[J]. International Journal of Modern Physics B, 2014, 28(12): 1442009.

    [22] [22] EHERNREICH T, LEVEILLE R, MAJID I, et al. 1-kW, all-glass Tm: fiber laser[J]. Proceedings of SPIE, 2010, 7580: 758016.

    [23] [23] LAROCHE M, CADIER B, GILLES H, et al. 20 W continuous-wave cladding-pumped Nd-doped fiber laser at910 nm[J]. Optics Letters, 2013, 38(16): 3065-3067.

    [24] [24] BARNONO A, CORRE K, KERVELLA L, et al. Low numerical aperature large-mode-area neodymium-doped fibersfabricated by SPCVD and ASD for laser operation near 920 nm[J]. Proceedings of SPIE, 2020, 11276: 112760L.

    [27] [27] SELVAS R, SAHU J K, FuU L B, et al. High-power, low-noise, Yb-doped, cladding-pumped, three-level fiber sources at 980 nm[J]. Optics Letters, 2003, 28(13): 1093-1095.

    [28] [28] YLA-KARLLO K H, SELVAS R, SOH S, et al. A 3.5 W 977 nm cladding-pumped jacketed air-clad ytterbiumdoped fiber laser[C]//Proceedings of Advanced Solid-State Photonics 2003, Optical Society of America, 2003: 103.

    [29] [29] ROSER F, JAUREGUI C, LIMPERT J, et al. 94 W 980 nm high brightness Yb-doped fiber laser[J]. Optics Express, 2008, 16(22): 17310-17318.

    [30] [30] GAPONTSEV V, FOMIN V, YUSIM A. Recent progress in scaling ofhigh power fiber lasers at IPG photonics[C]//Solid State Diode Laser Technology Review, 2009, Newton, MA, USA.

    [31] [31] LI P X, ZHANG X X, LIU Z, et al. Large-mode-area double-cladding photonic crystal fiber laser in the watt range at 980 nm[J]. Chinese Physics Letters, 2011, 28(8): 084206.

    [32] [32] HE J, WANG Z W, WU WD, et al. Short-length large-mode-area photonic crystal fiber laser operating at 978 nm[J]. Proceedings of SPIE, 2012, 8796: 87961V.

    [33] [33] ROYON R, LHERMITE J, SARGER L, et al. High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm[J]. Optics Express, 2013, 21(11): 13818-13823.

    [34] [34] KABLUKOV S I, DONTSOVA E I, ZLOBINA E A, et al. An LD-pumped Raman fiber laser operating below 1 μm[J].Laser Physics Letters, 2013, 10(8): 085103.

    [35] [35] ZHANG R, XUE Y, ZHANG H, et al. High power continuous wave Ytterbium-doped fiber oscillator at 1018 nm[J]. Proceedings of SPIE, 2014, 9266: 92661E.

    [36] [36] LEICH M, JAGER M, GRIMM S, et al. Tapered large-core 976 nm Yb-doped fiber laser with 10 W output power[J]. Laser Physics Letters, 2014, 11(4): 045102.

    [37] [37] XIAO H, LENG J Y, ZHANG H W, et al. High-power 1018 nm Ytterbium-doped fiber laser and its application in tendem pump[J]. Applied Optics, 2015, 54(27): 8166-8169.

    [38] [38] JIANG M, ZHOU P, XIAO H, et al. A high-power narrow-line width 1018 nm fiber laser based on a single-mode-few-mode-single-mode structure[J]. High Power Laser Science and Engineering, 2015, 3: E25.

    [39] [39] WANG R X, LIU Y, CAO J Q, et al. Experimental study on the all-fiberized continuous-wave ytterbium-doped laser operating near 980 nm[J]. Applied Optics, 2013, 52(24): 5920-5924.

    [40] [40] YU Y, AN Y Y, CAO J Q, et al. Experimental study on all-fiberized continuous-wave Yb-doped fiber amplifier operating near 980 nm [J]. IEEE Photonics Technology Letters, 2016, 28(4): 398-401.

    [41] [41] CHEN X L, WANG J H, ZHAO X, et al. 307 W high-power 1018 nm monolithic tandem pump fiber source with effective thermal management[J]. Chinese Optics Letters, 2017, 15(7): 071407.

    [42] [42] YAN P, WANG X J, LI D, et al. High-power 1018 nm ytterbium-doped fiber laser with output of 805 W[J]. Journal of the Optical Society of America B, 2016, 33(7): 1392-1398.

    [43] [43] LAFOUTI M, LATIFI H, SARABI H, et al. 407 W specially-designed fiber laser at 1018 nm laser from an ytterbium-doped 50/400 μm all-solid photonic band gap fiber[J]. Optics Express 2018, 26(3): 3138-3144.

    [44] [44] VALERO N, FERAL C, LHERMITE J, et al. 29 W diffraction limited monolithic ytterbium doped fiber laser system operating at 976 nm in the continuous wave regime[C]//Proceedings of 2019 Conference on Lasers and Electro-Optics Europe&European Quantum Electronics Conference, IEEE, 2019: 1-1.

    [45] [45] XU J M, YE J, ZHOU P, et al. Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality[J]. Science China Technological Sciences, 2019, 62(1): 80-86.

    [46] [46] VALERO N, FERAL C, LHERMITE J, et al. 39 W narrow spectral line width monolithic ytterbium-doped fiber MOPA system operating at 976 nm[J]. Optics Letters, 2020, 45(6): 1495-1498.

    Tools

    Get Citation

    Copy Citation Text

    FANG Weihua, XING Meishu, WU Yang. Researching Progress of 1 μm Fiber Laser[J]. Electro-Optic Technology Application, 2022, 37(1): 25

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 16, 2021

    Accepted: --

    Published Online: Apr. 22, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics